UltraScale™ Architecture Product Overview Datablad fra AMD

(I XILINXQ
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 1
© Copyright 2013–2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, UltraScale, Versal, Virtex, Vivado, Zynq, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, Arm, Arm1176JZ-S, CoreSight, Cortex, and PrimeCell are trademarks of Arm in
the EU and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
General Description
Xilinx® UltraScale™ architecture comprises high-performance FPGA, MPSoC, and RFSoC families that address a vast spectrum of
system requirements with a focus on lowering total power consumption through numerous innovative technological
advancements.
Kintex® UltraScale FPGAs: High-performance FPGAs with a focus on price/performance, using both monolithic and
next-generation stacked silicon interconnect (SSI) technology. High DSP and block RAM-to-logic ratios and next-generation
transceivers, combined with low-cost packaging, enable an optimum blend of capability and cost.
Kintex UltraScale+™ FPGAs: Increased performance and on-chip UltraRAM memory to reduce BOM cost. The ideal mix of
high-performance peripherals and cost-effective system implementation. Kintex UltraScale+ FPGAs have numerous power
options that deliver the optimal balance between the required system performance and the smallest power envelope.
Virtex® UltraScale FPGAs: High-capacity, high-performance FPGAs enabled using both monolithic and next-generation SSI
technology. Virtex UltraScale devices achieve the highest system capacity, bandwidth, and performance to address key market and
application requirements through integration of various system-level functions.
Virtex UltraScale+ FPGAs: The highest transceiver bandwidth, highest DSP count, and highest on-chip and in-package memory
available in the UltraScale architecture. Virtex UltraScale+ FPGAs also provide numerous power options that deliver the optimal
balance between the required system performance and the smallest power envelope.
Zynq® UltraScale+ MPSoCs: Combine the Arm® v8-based Cortex®-A53 high-performance energy-efficient 64-bit application
processor with the Arm Cortex-R5F real-time processor and the UltraScale architecture to create the industry's first
programmable MPSoCs. Provide unprecedented power savings, heterogeneous processing, and programmable acceleration.
Zynq® UltraScale+ RFSoCs: Combine RF data converter subsystem and forward error correction with industry-leading
programmable logic and heterogeneous processing capability. Integrated RF-ADCs, RF-DACs, and soft decision FECs (SD-FEC)
provide the key subsystems for multiband, multi-mode cellular radios and cable infrastructure.
Family Comparisons
UltraScale Architecture and
Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 Product Specification
Table 1: Device Resources
Kintex
UltraScale
FPGA
Kintex
UltraScale+
FPGA
Virtex
UltraScale
FPGA
Virtex
UltraScale+
FPGA
Zynq
UltraScale+
MPSoC
Zynq
UltraScale+
RFSoC
MPSoC Processing System ✓✓
RF-ADC/DAC
SD-FEC
System Logic Cells (K) 318–1,451 356–1,843 783–5,541 862–8,938 103–1,143 489–930
Block Memory (Mb) 12.7–75.9 12.7–60.8 44.3–132.9 23.6–94.5 4.5–34.6 22.8–38.0
UltraRAM (Mb) 0–81 90–360 0–36 13.5–45.0
HBM DRAM (GB) 0–16
DSP (Slices) 768–5,520 1,368–3,528 600–2,880 1,320–12,288 240–3,528 1,872–4,272
DSP Performance (GMAC/s) 8,180 6,287 4,268 21,897 6,287 7,613
Transceivers 12–64 16–76 36–120 32–128 0–72 8–16
Max. Transceiver Speed (Gb/s) 16.3 32.75 30.5 58.0 32.75 32.75
Max. Serial Bandwidth (full duplex) (Gb/s) 2,086 3,268 5,616 8,384 3,268 1,048
Memory Interface Performance (Mb/s) 2,400 2,666 2,400 2,666 2,666 2,666
I/O Pins 312–832 280–668 338–1,456 208–2,072 82–668 152–408
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 2
Summary of Features
RF Data Converter Subsystem Overview
Most Zynq UltraScale+ RFSoCs include an RF data converter subsystem, which contains multiple radio
frequency analog to digital converters (RF-ADCs) and multiple radio frequency digital to analog
converters (RF-DACs). The high-precision, high-speed, power efficient RF-ADCs and RF-DACs can be
individually configured for real data or in most cases can be configured in pairs for real and imaginary I/Q
data. See RF-ADCs and RF-DACs sections.
Soft Decision Forward Error Correction (SD-FEC) Overview
Some Zynq UltraScale+ RFSoCs include highly flexible soft decision FEC blocks for decoding and encoding
data as a means to control errors in data transmission over unreliable or noisy communication channels.
The SD-FEC blocks support low-density parity check (LDPC) decode/encode and Turbo decode for use in
5G wireless, backhaul, DOCSIS, and LTE applications.
Processing System Overview
Zynq UltraScale+ MPSoCs and RFSoCs feature dual and quad core variants of the Arm Cortex-A53 (APU)
with dual-core Arm Cortex-R5F (RPU) processing system (PS). Some devices also include a dedicated Arm
Mali™-400 MP2 graphics processing unit (GPU). See Ta ble 2.
To support the processors' functionality, a number of peripherals with dedicated functions are included in
the PS. For interfacing to external memories for data or configuration storage, the PS includes a
multi-protocol dynamic memory controller, a DMA controller, a NAND controller, an SD/eMMC controller
and a Quad SPI controller. In addition to interfacing to external memories, the APU also includes a Level-1
(L1) and Level-2 (L2) cache hierarchy; the RPU includes an L1 cache and Tightly Coupled memory
subsystem. Each has access to a 256KB on-chip memory.
For high-speed interfacing, the PS includes 4 channels of transmit (TX) and receive (RX) pairs of
transceivers, called PS-GTR transceivers, supporting data rates of up to 6.0Gb/s. These transceivers can
interface to the high-speed peripheral blocks that support PCIe at 5.0GT/s (Gen 2) as a root complex or
Endpoint in x1, x2, or x4 configurations; Serial-ATA (SATA) at 1.5Gb/s, 3.0Gb/s, or 6.0Gb/s data rates; and
up to two lanes of Display Port at 1.62Gb/s, 2.7Gb/s, or 5.4Gb/s data rates. The PS-GTR transceivers can
also interface to components over USB 3.0 and Serial Gigabit Media Independent Interface (SGMII).
Table 2: Zynq UltraScale+ MPSoC and RFSoC Device Features
MPSoC RFSoC
CG Devices EG Devices EV Devices DR Devices
APU Dual-core Arm Cortex-A53 Quad-core Arm Cortex-A53 Quad-core Arm Cortex-A53 Quad-core Arm Cortex-A53
RPU Dual-core Arm Cortex-R5F Dual-core Arm Cortex-R5F Dual-core Arm Cortex-R5F Dual-core Arm Cortex-R5F
GPU – Mali-400MP2 Mali-400MP2 –
VCU – H.264/H.265 –
(I XILINX D5891 www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 3
For general connectivity, the PS includes: a pair of USB 2.0 controllers, which can be configured as host,
device, or On-The-Go (OTG); an I2C controller; a UART; and a CAN2.0B controller that conforms to
ISO11898-1. There are also four triple speed Ethernet MACs and 128 bits of GPIO, of which 78 bits are
available through the MIO and 96 through the EMIO.
High-bandwidth connectivity based on the Arm AMBA® AXI4 protocol connects the processing units with
the peripherals and provides interface between the PS and the programmable logic (PL).
For additional information, go to: DS891, Zynq UltraScale+ MPSoC Overview.
I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken
Data is transported on and off chip through a combination of the high-performance parallel SelectIO™
interface and high-speed serial transceiver connectivity. I/O blocks provide support for cutting-edge
memory interface and network protocols through flexible I/O standard and voltage support. The serial
transceivers in the UltraScale architecture-based devices transfer data up to 58.0Gb/s, enabling 25G+
backplane designs with dramatically lower power per bit than previous generation transceivers. All
transceivers, except the PS-GTR, support the required data rates for 8.0GT/s (Gen3), and 16.0GT/s (Gen4)
for PCIe. The integrated blocks for PCIe can be configured for Endpoint or Root Port, supporting a variety
of link widths and speeds depending on the targeted device speed grade and package. Integrated blocks
for 150Gb/s Interlaken and 100Gb/s Ethernet (100G MAC/PCS) extend the capabilities of UltraScale
devices, enabling simple, reliable support for Nx100G switch and bridge applications. Virtex UltraScale+
HBM devices include Cache Coherent Interconnect for Accelerators (CCIX) ports for coherently sharing data
with different processors.
Clocks and Memory Interfaces
UltraScale devices contain powerful clock management circuitry, including clock synthesis, buffering, and
routing components that together provide a highly capable framework to meet design requirements. The
clock network allows for extremely flexible distribution of clocks to minimize the skew, power
consumption, and delay associated with clock signals. The clock management technology is tightly
integrated with dedicated memory interface circuitry to enable support for high-performance external
memories, including DDR4. In addition to parallel memory interfaces, UltraScale devices support serial
memories, such as hybrid memory cube (HMC).
Routing, SSI, Logic, Storage, and Signal Processing
Configurable Logic Blocks (CLBs) containing 6-input look-up tables (LUTs) and flip-flops, DSP slices with
27x18 multipliers, 36Kb block RAMs with built-in FIFO and ECC support, and 4Kx72 UltraRAM blocks (in
UltraScale+ devices) are all connected with an abundance of high-performance, low-latency interconnect.
In addition to logical functions, the CLB provides shift register, multiplexer, and carry logic functionality as
well as the ability to configure the LUTs as distributed memory to complement the highly capable and
configurable block RAMs. The DSP slice, with its 96-bit-wide XOR functionality, 27-bit pre-adder, and
30-bit A input, performs numerous independent functions including multiply accumulate, multiply add,
and pattern detect. In addition to the device interconnect, in devices using SSI technology, signals can
cross between super-logic regions (SLRs) using dedicated, low-latency interface tiles. These combined
routing resources enable easy support for next-generation bus data widths. Virtex UltraScale+ HBM
devices include up to 16GB of high bandwidth memory.
(I XILINX print compati ackages with ale devices A1156 pa raScale+ ions are UGSB3 www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 4
Configuration, Encryption, and System Monitoring
The configuration and encryption block performs numerous device-level functions critical to the
successful operation of the FPGA, MPSoC, or RFSoC. This high-performance configuration block enables
device configuration from external media through various protocols, including PCIe, often with no
requirement to use multi-function I/O pins during configuration. The configuration block also provides
256-bit AES-GCM decryption capability at the same performance as unencrypted configuration.
Additional features include SEU detection and correction, partial reconfiguration support, and
battery-backed RAM or eFUSE technology for AES key storage to provide additional security. The System
Monitor enables the monitoring of the physical environment via on-chip temperature and supply sensors
and can also monitor up to 17 external analog inputs. With Zynq UltraScale+ MPSoCs and RFSoCs, the
device is booted via the Configuration and Security Unit (CSU), which supports secure boot via the 256-bit
AES-GCM and SHA/384 blocks. The cryptographic engines in the CSU can be used after boot for user
encryption.
Migrating Devices
UltraScale and UltraScale+ families provide footprint compatibility to enable users to migrate designs
from one device or family to another. Any two packages with the same footprint identifier code are
footprint compatible. For example, Kintex UltraScale devices in the A1156 packages are footprint
compatible with Kintex UltraScale+ devices in the A1156 packages. Likewise, Virtex UltraScale devices in
the B2104 packages are compatible with Virtex UltraScale+ devices and Kintex UltraScale devices in the
B2104 packages. All valid device/package combinations are provided in the Device-Package Combinations
and Maximum I/Os tables in this document. Refer to UG583, UltraScale Architecture PCB Design User Guide
for more detail on migrating between UltraScale and UltraScale+ devices and packages.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 5
Kintex UltraScale FPGA Feature Summary
Table 3: Kintex UltraScale FPGA Feature Summary
KU025(1) KU035 KU040 KU060 KU085 KU095 KU115
System Logic Cells 318,150 444,343 530,250 725,550 1,088,325 1,176,000 1,451,100
CLB Flip-Flops 290,880 406,256 484,800 663,360 995,040 1,075,200 1,326,720
CLB LUTs 145,440 203,128 242,400 331,680 497,520 537,600 663,360
Maximum Distributed RAM (Mb) 4.1 5.9 7.0 9.1 13.4 4.7 18.3
Block RAM Blocks 360 540 600 1,080 1,620 1,680 2,160
Block RAM (Mb) 12.7 19.0 21.1 38.0 56.9 59.1 75.9
CMTs (1 MMCM, 2 PLLs) 6 10 10 12 22 16 24
I/O DLLs 24 40 40 48 56 64 64
Maximum HP I/Os(2) 208 416 416 520 572 650 676
Maximum HR I/Os(3) 104 104 104 104 104 52 156
DSP Slices 1,152 1,700 1,920 2,760 4,100 768 5,520
System Monitor 1111212
PCIe Gen3 x8 123 3446
150G Interlaken 0000020
100G Ethernet 0000020
GTH 16.3Gb/s Transceivers(4) 12 16 20 32 56 32 64
GTY 16.3Gb/s Transceivers(5) 00000320
Transceiver Fractional PLLs00000160
Notes:
1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section for details.
2. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
3. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.
4. GTH transceivers in SF/FB packages support data rates up to 12.5Gb/s. See Table 4.
5. GTY transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s. See Table 4.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 6
Kintex UltraScale Device-Package Combinations and Maximum I/Os
Table 4: Kintex UltraScale Device-Package Combinations and Maximum I/Os
Package
(1)(2)(3) Package
Dimensions
(mm)
KU025 KU035 KU040 KU060 KU085 KU095 KU115
HR, HP
GTH HR, HP
GTH HR, HP
GTH HR, HP
GTH HR, HP
GTH HR, HP
GTH, GTY(4) HR, HP
GTH
SFVA784(5) 23x23 104, 364
8104, 364
8
FBVA676(5) 27x27 104, 208
16 104, 208
16
FBVA900(5) 31x31 104, 364
16 104, 364
16
FFVA1156 35x35 104, 208
12 104, 416
16 104, 416
20 104, 416
28 52, 468
20, 8
FFVA1517 40x40 104, 520
32
FLVA1517 40x40 104, 520
48 104, 520
48
FFVC1517 40x40 52, 468
20, 20
FLVD1517 40x40 104, 234
64
FFVB1760 42.5x42.5 52, 650
32, 16
FLVB1760 42.5x42.5 104, 572
44 104, 598
52
FLVD1924 45x45 156, 676
52
FLVF1924 45x45 104, 520
56 104, 624
64
FLVA2104 47.5x47.5 156, 676
52
FFVB2104 47.5x47.5 52, 650
32, 32
FLVB2104 47.5x47.5 104, 598
64
Notes:
1. Go to Ordering Information for package designation details.
2. FB/FF/FL packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale
architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the
UltraScale Architecture Product Selection Guide for details on inter-family migration.
4. GTY transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s.
5. GTH transceivers in SF/FB packages support data rates up to 12.5Gb/s.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 7
Kintex UltraScale+ FPGA Feature Summary
Table 5: Kintex UltraScale+ FPGA Feature Summary
KU3P KU5P KU9P KU11P KU13P KU15P KU19P
System Logic Cells 355,950 474,600 599,550 653,100 746,550 1,143,450 1,842,750
CLB Flip-Flops 325,440 433,920 548,160 597,120 682,560 1,045,440 1,684,800
CLB LUTs 162,720 216,960 274,080 298,560 341,280 522,720 842,400
Max. Distributed RAM (Mb) 4.7 6.1 8.8 9.1 11.3 9.8 11.6
Block RAM Blocks 360 480 912 600 744 984 1,728
Block RAM (Mb) 12.7 16.9 32.1 21.1 26.2 34.6 60.8
UltraRAM Blocks 48 64 0 80 112 128 288
UltraRAM (Mb) 13.5 18.0 0 22.5 31.5 36.0 81.0
CMTs (1 MMCM and 2 PLLs)44484119
Max. HP I/O(1) 208 208 208 416 208 572 468
Max. HD I/O(2) 96 96 96 96 96 96 72
DSP Slices 1,368 1,824 2,520 2,928 3,528 1,968 1,080
System Monitor 1111111
GTH Transceiver 16.3Gb/s 0 0 28 32 28 44 0
GTY Transceivers 32.75Gb/s(3) 161602003232
Transceiver Fractional PLLs 8 8 14 26 14 38 16
PCIE4 (PCIe Gen3 x16) 1104050
PCIE4C (PCIe Gen3 x16 / Gen4
x8 / CCIX)(4) 0000003
150G Interlaken 0001040
100G Ethernet w/RS-FEC 0102041
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s. See
Table 6.
4. This block operates in compatibility mode for 16.0GT/s (Gen4) operation. Go to PG213, UltraScale+ Devices Integrated
Block for PCI Express Product Guide, for details on compatibility mode.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 8
Kintex UltraScale+ Device-Package Combinations and Maximum I/Os
Table 6: Kintex UltraScale+ Device-Package Combinations and Maximum I/Os
Package
(1)(2)(4)
Package
Dimensions
(mm)
KU3P KU5P KU9P KU11P KU13P KU15P KU19P
HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY
SFVB784(3) 23x23 96, 208
0, 16 96, 208
0, 16
FFVA676(3) 27x27 48, 208
0, 16 48, 208
0, 16
FFVB676 27x27 72, 208
0, 16 72, 208
0, 16
FFVD900(3) 31x31 96, 208
0, 16 96, 208
0, 16 96, 312
16, 0
FFVE900 31x31 96, 208
28, 0 96, 208
28, 0
FFVA1156(3) 35x35 48, 416
20, 8 48, 468
20, 8
FFVE1517 40x40 96, 416
32, 20 96, 416
32, 24
FFVA1760 42.5x42.5 96, 416
44, 32
FFVE1760 42.5x42.5 96, 572
32, 24
FFVJ1760 42.5x42.5 72, 468
0, 32
FFVB2104 47.5x47.5 72, 468
0, 32
Notes:
1. Go to Ordering Information for package designation details.
2. FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
3. GTY transceiver line rates are package limited: SFVB784 to 12.5Gb/s; FFVA676, FFVD900, and FFVA1156 to 16.3Gb/s.
4. Packages with the same last letter and number sequence, e.g., A676, are footprint compatible with all other UltraScale
architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See
the UltraScale Architecture Product Selection Guide for details on inter-family migration.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 9
Virtex UltraScale FPGA Feature Summary
Table 7: Virtex UltraScale FPGA Feature Summary
VU065 VU080 VU095 VU125 VU160 VU190 VU440
System Logic Cells 783,300 975,000 1,176,000 1,566,600 2,026,500 2,349,900 5,540,850
CLB Flip-Flops 716,160 891,424 1,075,200 1,432,320 1,852,800 2,148,480 5,065,920
CLB LUTs 358,080 445,712 537,600 716,160 926,400 1,074,240 2,532,960
Maximum Distributed RAM (Mb) 4.8 3.9 4.8 9.7 12.7 14.5 28.7
Block RAM Blocks 1,260 1,421 1,728 2,520 3,276 3,780 2,520
Block RAM (Mb) 44.3 50.0 60.8 88.6 115.2 132.9 88.6
CMT (1 MMCM, 2 PLLs) 10161620283030
I/O DLLs 40 64 64 80 120 120 120
Maximum HP I/Os(1) 468 780 780 780 650 650 1,404
Maximum HR I/Os(2) 52 52 52 104 52 52 52
DSP Slices 600 672 768 1,200 1,560 1,800 2,880
System Monitor 1112333
PCIe Gen3 x8 2444466
150G Interlaken 3666890
100G Ethernet 3446993
GTH 16.3Gb/s Transceivers 20 32 32 40 52 60 48
GTY 30.5Gb/s Transceivers 20 32 32 40 52 60 0
Transceiver Fractional PLLs 10 16 16 20 26 30 0
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 10
Virtex UltraScale Device-Package Combinations and Maximum I/Os
Table 8: Virtex UltraScale Device-Package Combinations and Maximum I/Os
Package(1)(2)(3) Package
Dimensions
(mm)
VU065 VU080 VU095 VU125 VU160 VU190 VU440
HR, HP
GTH, GTY HR, HP
GTH, GTY HR, HP
GTH, GTY HR, HP
GTH, GTY HR, HP
GTH, GTY HR, HP
GTH, GTY HR, HP
GTH, GTY
FFVC1517 40x40 52, 468
20, 20 52, 468
20, 20 52, 468
20, 20
FFVD1517 40x40 52, 286
32, 32 52, 286
32, 32
FLVD1517 40x40 52, 286
40, 32
FFVB1760 42.5x42.5 52, 650
32, 16 52, 650
32, 16
FLVB1760 42.5x42.5 52, 650
36, 16
FFVA2104 47.5x47.5 52, 780
28, 24 52, 780
28, 24
FLVA2104 47.5x47.5 52, 780
28, 24
FFVB2104 47.5x47.5 52, 650
32, 32 52, 650
32, 32
FLVB2104 47.5x47.5 52, 650
40, 36
FLGB2104 47.5x47.5 52, 650
40, 36 52, 650
40, 36
FFVC2104 47.5x47.5 52, 364
32, 32
FLVC2104 47.5x47.5 52, 364
40, 40
FLGC2104 47.5x47.5 52, 364
52, 52 52, 364
52, 52
FLGB2377 50x50 52, 1248
36, 0
FLGA2577 52.5x52.5 0, 448
60, 60
FLGA2892 55x55 52, 1404
48, 0
Notes:
1. Go to Ordering Information for package designation details.
2. All packages have 1.0mm ball pitch.
3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale
architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the
UltraScale Architecture Product Selection Guide for details on inter-family migration.
(I XILINX, P6213 www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 11
Virtex UltraScale+ FPGA Feature Summary
Table 9: Virtex UltraScale+ FPGA Feature Summary
VU3P VU5P VU7P VU9P VU11P VU13P VU19P VU23P VU27P VU29P
System Logic Cells 862,050 1,313,763 1,724,100 2,586,150 2,835,000 3,780,000 8,937,600 2,252,250 2,835,000 3,780,000
CLB Flip-Flops 788,160 1,201,154 1,576,320 2,364,480 2,592,000 3,456,000 8,171,520 2,059,200 2,592,000 3,456,000
CLB LUTs 394,080 600,577 788,160 1,182,240 1,296,000 1,728,000 4,085,760 1,029,600 1,296,000 1,728,000
Max. Distributed RAM (Mb) 12.018.324.136.136.248.358.414.236.248.3
Block RAM Blocks 720 1,024 1,440 2,160 2,016 2,688 2,160 2,112 2,016 2,688
Block RAM (Mb) 25.336.050.675.970.994.575.974.370.994.5
UltraRAM Blocks 320 470 640 960 960 1,280 320 352 960 1,280
UltraRAM (Mb) 90.0 132.2 180.0 270.0 270.0 360.0 90.0 99.0 270.0 360.0
HBM DRAM (GB) –––––––––
CMTs (1 MMCM and 2 PLLs) 10202030121640111616
Max. HP I/O(1) 520 832 832 832 624 832 1,976 572 676 676
Max. HD I/O(2) 000000967200
DSP Slices 2,280 3,474 4,560 6,840 9,216 12,288 3,840 1,320 9,216 12,288
System Monitor 1223344144
GTY Transceivers 32.75Gb/s(3) 40 80 80 120 96 128 80 34 32 32
GTM Transceivers 58.0Gb/s 000000044848
100G / 50G KP4 FEC 00000002/424/4824/48
Transceiver Fractional PLLs 20 40 40 60 48 64 40 20 40 40
PCIE4 (PCIe Gen3 x16) 2446340011
PCIE4C (PCIe Gen3 x16 / Gen4 x8 /
CCIX)(4) 0000008400
150G Interlaken 3469680088
100G Ethernet w/RS-FEC 3469912021515
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
3. GTY transceivers in the FLGF1924 package support data rates up to 16.3Gb/s. See Table 10.
4. This block operates in compatibility mode for 16.0GT/s (Gen4) operation. Go to PG213, UltraScale+ Devices Integrated Block for PCI Express Product Guide, for
details on compatibility mode.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 12
Virtex UltraScale+ Device-Package Combinations and Maximum I/Os
Table 10: Virtex UltraScale+ Device-Package Combinations and Maximum I/Os
Package
(1)(2)(3)(4)(5) Package
Dimensions
(mm)
VU3P VU5P VU7P VU9P VU11P VU13P VU19P VU23P VU27P VU29P
HP, GTY HP, GTY HP, GTY HP, GTY HP, GTY HP, GTY HP, HD, GTY HP, HD, GTY, GTM HP, GTY, GTM HP, GTY, GTM
VSVA1365 35x35 364, 0, 34(7), 4
FFVC1517 40x40 520, 40
FSVJ1760 42.5x42.5 572, 72, 34, 4
FLGF1924(5) 45x45 624, 64
FLVA2104 47.5x47.5 832, 52 832, 52
FLGA2104 47.5x47.5 832, 52
FHGA2104 52.5x52.5(6) 832, 52
FLVB2104 47.5x47.5 702, 76 702, 76
FLGB2104 47.5x47.5 702, 76 572, 76
FHGB2104 52.5x52.5(6) 702, 76
FLVC2104 47.5x47.5 416, 80 416, 80
FLGC2104 47.5x47.5 416, 104 416, 96
FHGC2104 52.5x52.5(6) 416, 104
FSGD2104 47.5x47.5 676, 76 572, 76
FIGD2104 52.5x52.5(6) 676, 76 676, 16, 30 676, 16, 30
FLGA2577 52.5x52.5 448, 120 448, 96 448, 128
FSGA2577 52.5x52.5 448, 128 448, 32, 48 448, 32, 48
FSVA3824 65x65 1976, 96, 48
FSVB3824 65x65 1664, 96, 80
Notes:
1. Go to Ordering Information for package designation details.
2. All packages have 1.0mm ball pitch.
3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence.
The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.
4. Consult UG583, UltraScale Architecture PCB Design User Guide for specific migration details.
5. GTY transceivers in the FLGF1924 package support data rates up to 16.3Gb/s.
6. These 52.5x52.5mm overhang packages have the same PCB ball footprint as the corresponding 47.5x47.5mm packages (i.e., the same last letter and number sequence) and
are footprint compatible.
7. GTYs in quads 224-230 and 232 are limited to 16Gb/s.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 13
Virtex UltraScale+ HBM Device-Package Combinations and Maximum I/Os
Table 11: Virtex UltraScale+ HBM FPGA Feature Summary
VU31P VU33P VU35P VU37P VU45P VU47P VU57P
System Logic Cells 961,800 961,800 1,906,800 2,851,800 1,906,800 2,851,800 2,851,800
CLB Flip-Flops 879,360 879,360 1,743,360 2,607,360 1,743,360 2,607,360 2,607,360
CLB LUTs 439,680 439,680 871,680 1,303,680 871,680 1,303,680 1,303,680
Max. Distributed RAM (Mb) 12.5 12.5 24.6 36.7 24.6 36.7 36.7
Block RAM Blocks 672 672 1,344 2,016 1,344 2,016 2,016
Block RAM (Mb) 23.6 23.6 47.3 70.9 47.3 70.9 70.9
UltraRAM Blocks 320 320 640 960 640 960 960
UltraRAM (Mb) 90.0 90.0 180.0 270.0 180.0 270.0 270.0
HBM DRAM (GB) 4 8 8 8 16 16 16
CMTs (1 MMCM and 2 PLLs) 4 4 8 12 8 12 12
Max. HP I/O(1) 208 208 416 624 416 624 624
DSP Slices 2,880 2,880 5,952 9,024 5,952 9,024 9,024
System Monitor 1123233
GTY Transceivers 32.75Gb/s(2) 32 32 64 96 64 96 32
GTM Transceivers 58.0Gb/s 0 0 0 0 0 0 32
100G / 50G KP4 FEC 0 0 0 0 0 0 16/32
Transceiver Fractional PLLs 16 16 32 48 32 48 32
PCIE4 (PCIe Gen3 x16) 0 0 1 2 1 2 0
PCIE4C (PCIe Gen3 x16 /
Gen4 x8 / CCIX)(3) 4444444
150G Interlaken 24244
100G Ethernet w/RS-FEC 2 2 5 8 5 8 10
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. GTY transceivers in the FLGF1924 package support data rates up to 16.3Gb/s. See Table 12.
3. This block operates in compatibility mode for 16.0GT/s (Gen4) operation. Go to PG213, UltraScale+ Devices Integrated
Block for PCI Express Product Guide, for details on compatibility mode.
Table 12: Virtex UltraScale+ HBM Device-Package Combinations and Maximum I/Os
Package
(1)(2)(3)(4) Package
Dimensions
(mm)
VU31P VU33P VU35P VU37P VU45P VU47P VU57P
HP, GTYHP, GTYHP, GTYHP, GTYHP, GTYHP, GTYHP, GTY, GTM
FSVH1924 45x45 208, 32
FSVH2104 47.5x47.5 208, 32 416, 64 416, 64
FSVH2892 55x55 416, 64 624, 96 416, 64 624, 96
FSVK2892 55x55 624, 32, 32
Notes:
1. Go to Ordering Information for package designation details.
2. All packages have 1.0mm ball pitch.
3. Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale
architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the
UltraScale Architecture Product Selection Guide for details on inter-family migration.
4. Consult UG583, UltraScale Architecture PCB Design User Guide for specific migration details.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 14
Zynq UltraScale+ MPSoC: CG Device Feature Summary
(3)
Table 13: Zynq UltraScale+ MPSoC: CG Device Feature Summary
ZU2CG ZU3CG ZU4CG ZU5CG ZU6CG ZU7CG ZU9CG
Application Processing Unit Dual-core Arm Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point;
32KB/32KB L1 Cache, 1MB L2 Cache
Real-Time Processing Unit Dual-core Arm Cortex-R5F with CoreSight; Single/Double Precision Floating Point;
32KB/32KB L1 Cache, and TCM
Embedded and External
Memory 256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3;
External Quad-SPI; NAND; eMMC
General Connectivity 214 PS I/O; UART; CAN; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; WatchDog Timers; Triple
Timer Counters
High-Speed Connectivity 4 PS-GTR; PCIe Gen1/2; Serial ATA 3.1; DisplayPort 1.2a; USB 3.0; SGMII
System Logic Cells 103,320 154,350 192,150 256,200 469,446 504,000 599,550
CLB Flip-Flops 94,464 141,120 175,680 234,240 429,208 460,800 548,160
CLB LUTs 47,232 70,560 87,840 117,120 214,604 230,400 274,080
Distributed RAM (Mb) 1.2 1.8 2.6 3.5 6.9 6.2 8.8
Block RAM Blocks 150 216 128 144 714 312 912
Block RAM (Mb) 5.3 7.6 4.5 5.1 25.1 11.0 32.1
UltraRAM Blocks 0 0 48 64 0 96 0
UltraRAM (Mb) 0 0 13.5 18.0 0 27.0 0
DSP Slices 240 360 728 1,248 1,973 1,728 2,520
CMTs 3344484
Max. HP I/O(1) 156 156 156 156 208 416 208
Max. HD I/O(2) 96 96 96 96 120 48 120
System Monitor 2222222
GTH Transceiver 16.3Gb/s(3) 0 0 16 16 24 24 24
GTY Transceivers 32.75Gb/s0000000
Transceiver Fractional PLLs0088121212
PCIE4 (PCIe Gen3 x16)0022020
150G Interlaken 0000000
100G Ethernet w/ RS-FEC0000000
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 14.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 15
Zynq UltraScale+: CG Device-Package Combinations and Maximum I/Os
Table 14: Zynq UltraScale+ MPSoC: CG Device-Package Combinations and Maximum I/Os
Package
(1)(2)(3)(4)(5)
Package
Dimensions
(mm)
ZU2CG ZU3CG ZU4CG ZU5CG ZU6CG ZU7CG ZU9CG
HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY
SBVA484(6) 19x19 24, 58
0, 0 24, 58
0, 0
SFVA625 21x21 24, 156
0, 0 24, 156
0, 0
SFVC784(7) 23x23 96, 156
0, 0 96, 156
0, 0 96, 156
4, 0 96, 156
4, 0
FBVB900 31x31 48, 156
16, 0 48, 156
16, 0 48, 156
16, 0
FFVC900 31x31 48, 156
16, 0 48, 156
16, 0
FFVB1156 35x35 120, 208
24, 0 120, 208
24, 0
FFVC1156 35x35 48, 312
20, 0
FFVF1517 40x40 48, 416
24, 0
Notes:
1. Go to Ordering Information for package designation details.
2. FB/FF packages have 1.0mm ball pitch. SB/SF packages have 0.8mm ball pitch.
3. All device package combinations bond out 4 PS-GTR transceivers.
4. All device package combinations bond out 214 PS I/O except ZU2CG and ZU3CG in the SBVA484 and SFVA625 packages,
which bond out 170 PS I/Os. Packages that bond out 170 PS I/O support DDR 32-bit only.
5. Packages with the same last letter and number sequence, e.g., A484, are footprint compatible with all other UltraScale
architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.
6. All 58 HP I/O pins are powered by the same VCCO supply.
7. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 16
Zynq UltraScale+ MPSoC: EG Device Feature Summary
Table 15: Zynq UltraScale+ MPSoC: EG Device Feature Summary
ZU2EG ZU3EG ZU4EG ZU5EG ZU6EG ZU7EG ZU9EG ZU11EG ZU15EG ZU17EG ZU19EG
Application Processing Unit Quad-core Arm Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1MB L2 Cache
Real-Time Processing Unit Dual-core Arm Cortex-R5F with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM
Embedded and External
Memory 256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3;
External Quad-SPI; NAND; eMMC
General Connectivity 214 PS I/O; UART; CAN; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; WatchDog Timers; Triple Timer Counters
High-Speed Connectivity 4 PS-GTR; PCIe Gen1/2; Serial ATA 3.1; DisplayPort 1.2a; USB 3.0; SGMII
Graphic Processing Unit Arm Mali-400 MP2; 64KB L2 Cache
System Logic Cells 103,320 154,350 192,150 256,200 469,446 504,000 599,550 653,100 746,550 926,194 1,143,450
CLB Flip-Flops 94,464 141,120 175,680 234,240 429,208 460,800 548,160 597,120 682,560 846,806 1,045,440
CLB LUTs 47,232 70,560 87,840 117,120 214,604 230,400 274,080 298,560 341,280 423,403 522,720
Distributed RAM (Mb) 1.21.82.63.56.96.28.89.111.38.09.8
Block RAM Blocks 150 216 128 144 714 312 912 600 744 796 984
Block RAM (Mb) 5.3 7.6 4.5 5.1 25.1 11.0 32.1 21.1 26.2 28.0 34.6
UltraRAM Blocks 0 0 48 64 0 96 0 80 112 102 128
UltraRAM (Mb) 0 0 13.5 18.0 0 27.0 0 22.5 31.5 28.7 36.0
DSP Slices 240 360 728 1,248 1,973 1,728 2,520 2,928 3,528 1,590 1,968
CMTs 3344484841111
Max. HP I/O(1) 156 156 156 156 208 416 208 416 208 572 572
Max. HD I/O(2) 96 96 96 96 120 48 120 96 120 96 96
System Monitor 22222222222
GTH Transceiver 16.3Gb/s(3) 0 0 16 16 24 24 24 32 24 44 44
GTY Transceivers 32.75Gb/s00000001602828
Transceiver Fractional PLLs008812121224123636
PCIE4 (PCIe Gen3 x16) 00220204045
150G Interlaken 00000001024
100G Ethernet w/ RS-FEC00000002024
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 16.
(I XILINX, 24, 58 24, 58 24, 156 24, 156 96, 156 96,156 96, 156 96,156 48,156 48,156 48,156 48, 156 48, 156 48, 156 120, 208 120, 208 120, 208 48, 312 48, 312 72, 416 72,572 72,572 48, 416 48, 416 96,416 96,416 96,416 48,260 48,260 96, 572 96, 572 www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 17
Zynq UltraScale+ MPSoC: EG Device-Package Combinations and Maximum I/Os
Table 16: Zynq UltraScale+ MPSoC: EG Device-Package Combinations and Maximum I/Os
Package
(1)(2)(3)(4)(5)
Package
Dimensions
(mm)
ZU2EG ZU3EG ZU4EG ZU5EG ZU6EG ZU7EG ZU9EG ZU11EG ZU15EG ZU17EG ZU19EG
HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY
SBVA484(6) 19x19 24, 58
0, 0 24, 58
0, 0
SFVA625 21x21 24, 156
0, 0 24, 156
0, 0
SFVC784(7) 23x23 96, 156
0, 0 96, 156
0, 0 96, 156
4, 0 96, 156
4, 0
FBVB900 31x31 48, 156
16, 0 48, 156
16, 0 48, 156
16, 0
FFVC900 31x31 48, 156
16, 0 48, 156
16, 0 48, 156
16, 0
FFVB1156 35x35 120, 208
24, 0 120, 208
24, 0 120, 208
24, 0
FFVC1156 35x35 48, 312
20, 0 48, 312
20, 0
FFVB1517 40x40 72, 416
16, 0 72, 572
16, 0 72, 572
16, 0
FFVF1517 40x40 48, 416
24, 0 48, 416
32, 0
FFVC1760 42.5x42.5 96, 416
32, 16 96, 416
32, 16 96, 416
32, 16
FFVD1760 42.5x42.5 48, 260
44, 28 48, 260
44, 28
FFVE1924 45x45 96, 572
44, 0 96, 572
44, 0
Notes:
1. Go to Ordering Information for package designation details.
2. FB/FF packages have 1.0mm ball pitch. SB/SF packages have 0.8mm ball pitch.
3. All device package combinations bond out 4 PS-GTR transceivers.
4. All device package combinations bond out 214 PS I/O except ZU2EG and ZU3EG in the SBVA484 and SFVA625 packages, which bond out 170 PS I/Os. Packages that
bond out 170 PS I/O support DDR 32-bit only.
5. Packages with the same last letter and number sequence, e.g., A484, are footprint compatible with all other UltraScale architecture-based devices with the same
sequence. The footprint compatible devices within this family are outlined.
6. All 58 HP I/O pins are powered by the same VCCO supply.
7. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 18
Zynq UltraScale+ MPSoC: EV Device Feature Summary
Table 17: Zynq UltraScale+ MPSoC: EV Device Feature Summary
ZU4EV ZU5EV ZU7EV
Application Processing Unit Quad-core Arm Cortex-A53 MPCore with CoreSight; NEON & Single/Double Precision Floating Point;
32KB/32KB L1 Cache, 1MB L2 Cache
Real-Time Processing Unit Dual-core Arm Cortex-R5F with CoreSight; Single/Double Precision Floating Point;
32KB/32KB L1 Cache, and TCM
Embedded and External
Memory 256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3;
External Quad-SPI; NAND; eMMC
General Connectivity 214 PS I/O; UART; CAN; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; WatchDog Timers; Triple
Timer Counters
High-Speed Connectivity 4 PS-GTR; PCIe Gen1/2; Serial ATA 3.1; DisplayPort 1.2a; USB 3.0; SGMII
Graphic Processing Unit Arm Mali-400 MP2; 64KB L2 Cache
Video Codec 1 1 1
System Logic Cells 192,150 256,200 504,000
CLB Flip-Flops 175,680 234,240 460,800
CLB LUTs 87,840 117,120 230,400
Distributed RAM (Mb) 2.6 3.5 6.2
Block RAM Blocks 128 144 312
Block RAM (Mb) 4.5 5.1 11.0
UltraRAM Blocks 48 64 96
UltraRAM (Mb) 13.5 18.0 27.0
DSP Slices 728 1,248 1,728
CMTs 4 4 8
Max. HP I/O(1) 156 156 416
Max. HD I/O(2) 96 96 48
System Monitor 2 2 2
GTH Transceiver 16.3Gb/s(3) 16 16 24
GTY Transceivers 32.75Gb/s 0 0 0
Transceiver Fractional PLLs 8 8 12
PCIE4 (PCIe Gen3 x16) 2 2 2
150G Interlaken 0 0 0
100G Ethernet w/ RS-FEC 0 0 0
Notes:
1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2. HD = High-density I/O with support for I/O voltage from 1.2V to 3.3V.
3. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s. See Table 18.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 19
Zynq UltraScale+: EV Device-Package Combinations and Maximum I/Os
Table 18: Zynq UltraScale+ MPSoC: EV Device-Package Combinations and Maximum I/Os
Package
(1)(2)(3)(4)
Package
Dimensions
(mm)
ZU4EV ZU5EV ZU7EV
HD, HP
GTH, GTY HD, HP
GTH, GTY HD, HP
GTH, GTY
SFVC784(5) 23x23 96, 156
4, 0 96, 156
4, 0
FBVB900 31x31 48, 156
16, 0 48, 156
16, 0 48, 156
16, 0
FFVC1156 35x35 48, 312
20, 0
FFVF1517 40x40 48, 416
24, 0
Notes:
1. Go to Ordering Information for package designation details.
2. FB/FF packages have 1.0mm ball pitch. SF packages have 0.8mm ball pitch.
3. All device package combinations bond out 4 PS-GTR transceivers.
4. GTH transceivers in the SFVC784 package support data rates up to 12.5Gb/s.
5. Packages with the same last letter and number sequence, e.g., B900, are footprint compatible with all other UltraScale
architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 20
Zynq UltraScale+ RFSoC: Device Feature Summary
Table 19: Zynq UltraScale+ RFSoC Feature Summary
ZU21DR ZU25DR ZU27DR ZU28DR ZU29DR ZU39DR ZU42DR ZU43DR ZU46DR ZU47DR ZU48DR ZU49DR
12-bit
RF-ADC w/
DDC
# of ADCs 08881616
Max Rate (GSPS) 4.096 4.096 4.096 2.058 2.220
14-bit
RF-ADC w/
DDC
# of ADCs ––––––824848816
Max Rate (GSPS)––––––2.55.05.02.55.05.05.02.5
14-bit
RF-DAC w/
DUC
# of DACs 0888161684128816
Max Rate (GSPS) 6.554 6.554 6.554 6.554 6.554 10.0 10.0 10.0 10.0 10.0 10.0
SD-FEC 800800008080
Application Processing Unit Quad-core Arm Cortex-A53 MPCore with CoreSight™; NEON and Single/Double Precision Floating Point; 32KB/32KB L1 Cache, 1MB L2 Cache
Real-Time Processing Unit Dual-core Arm Cortex-R5F with CoreSight; Single/Double Precision Floating Point; 32KB/32KB L1 Cache, and TCM
Embedded and External Memory 256KB On-Chip Memory w/ECC; External DDR4; DDR3; DDR3L; LPDDR4; LPDDR3; External Quad-SPI; NAND; eMMC
General Connectivity 214 PS I/O; UART; CAN; USB 2.0; I2C; SPI; 32b GPIO; Real Time Clock; Watchdog Timers; Triple Timer Counters
High-Speed Connectivity 4 PS-GTR; PCIe® Gen1/2; Serial ATA 3.1; DisplayPort 1.2a; USB 3.0; SGMII
System Logic Cells 930,300 678,318 930,300 930,300 930,300 930,300 489,300 930,300 930,300 930,300 930,300 930,300
CLB Flip-Flops 850,560 620,176 850,560 850,560 850,560 850,560 447,360 850,560 850,560 850,560 850,560 850,560
CLB LUTs 425,280 310,088 425,280 425,280 425,280 425,280 223,680 425,280 425,280 425,280 425,280 425,280
Distributed RAM (Mb) 13.0 9.6 13.0 13.0 13.0 13.0 6.8 13.0 13.0 13.0 13.0 13.0
Block RAM Blocks 1,080 792 1,080 1,080 1,080 1,080 648 1,080 1,080 1,080 1,080 1,080
Block RAM (Mb) 38.0 27.8 38.0 38.0 38.0 38.0 22.8 38.0 38.0 38.0 38.0 38.0
UltraRAM Blocks 80 48 80 80 80 80 160 80 80 80 80 80
UltraRAM (Mb) 22.5 13.5 22.5 22.5 22.5 22.5 45.0 22.5 22.5 22.5 22.5 22.5
DSP Slices 4,272 3,145 4,272 4,272 4,272 4,272 1,872 4,272 4,272 4,272 4,272 4,272
CMTs 868888588888
Maximum HP I/O 208 299 299 299 312 312 128 299 312 299 299 312
Maximum HD I/O 724848489696244848484896
System Monitor 111111111111
GTY Transceivers 16 8 16 16 16 16 8 16 16 16 16 16
Transceivers Fractional PLLs 8 4 8 8 8 8 4 8 8 8 8 8
PCIE4 (PCIe Gen3 x16) 212222–––
PCIE4C (PCIe Gen3 x16 / Gen4 x8
/ CCIX)(1) ––––––022222
150G Interlaken 1 1 1 1 1 1 0 1 1 1 1 1
100G Ethernet w/ RS-FEC 2 1 2 2 2 2 0 2 2 2 2 2
Notes:
1. This block operates in compatibility mode for 16.0GT/s (Gen4) operation. Go to PG213, UltraScale+ Devices Integrated Block for PCI Express Product Guide, for details on compatibility mode.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 21
Table 20: Zynq UltraScale+ RFSoC Device-Package Combinations and Maximum I/Os
Package
(1) Dim.
(mm)
ZU21DR ZU25DR ZU27DR ZU28DR ZU29DR ZU39DR ZU42DR ZU43DR ZU46DR ZU47DR ZU48DR ZU49DR
PSIO, HDIO, HPIO,
PS-GTR, GTY, RF-ADC, RF-DAC
FFVD1156 35x35 214, 72, 208
4, 16, 0, 0
FFVE1156 35x35 214, 48, 104
4, 8, 8, 8 214, 48, 104
4, 8, 8, 8 214, 48, 104
4, 8, 8, 8 214, 24 128
4, 8, 10, 8 214, 48, 104
4, 8, 4, 4 214, 48, 104
4, 8, 8, 8 214, 48, 104
4, 8, 8, 8
FSVE1156 35x35 214, 48, 104
4, 8, 8, 8 214, 48, 104
4, 8, 8, 8 214, 48, 104
4, 8, 8, 8 214, 24, 128
4, 8, 10, 8 214, 48, 104
4, 8, 4, 4 214, 48, 104
4, 8, 8, 8 214, 48, 104
4, 8, 8, 8
FFVG1517 40x40 214, 48, 299
4, 8, 8, 8 214, 48, 299
4, 16, 8, 8 214, 48, 299
4, 16, 8, 8 214, 48, 299
4, 16, 4, 4 214, 48, 299
4, 16, 8, 8 214, 48, 299
4, 16, 8, 8
FSVG1517 40x40 214, 48, 299
4, 8, 8, 8 214, 48, 299
4, 16, 8, 8 214, 48, 299
4, 16, 8, 8 214, 48, 299
4, 16, 4, 4 214, 48, 299
4, 16, 8, 8 214, 48, 299
4, 16, 8, 8
FFVF1760 42.5x42.5 214, 96, 312
4, 16, 16, 16 214, 96, 312
4, 16, 16, 16 214, 96, 312
4, 16, 16, 16
FSVF1760 42.5x42.5 214, 96, 312
4, 16, 16, 16 214, 96, 312
4, 16, 16, 16 214, 96, 312
4, 16, 16, 16
FFVH1760 42.5x42.5 214, 48, 312
4, 16, 12(2), 12
FSVH1760 42.5x42.5 214, 48, 312
4, 16, 12(2), 12
Notes:
1. Package(2)s with the same last letter and number sequence, e.g., B900, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible
devices within this family are outlined.
2. Of these 12 RF-ADCs, 8 can operate up to 2.5 GSPS and 4 can operate up to 5.0 GSPS.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 22
Device Layout
UltraScale devices are arranged in a column-and-grid layout. Columns of resources are combined in
different ratios to provide the optimum capability for the device density, target market or application, and
device cost. At the core of Zynq UltraScale+ MPSoCs and RFSoCs is the processing system that displaces
some of the full or partial columns of programmable logic resources. Figure 1 shows a device-level view
with resources grouped together. For simplicity, certain resources such as the processing system,
integrated blocks for PCIe, configuration logic, and System Monitor are not shown.
Resources within the device are divided into segmented clock regions. The height of a clock region is
60 CLBs. A bank of 52 I/Os, 24 DSP slices, 12 block RAMs, or 4 transceiver channels also matches the height
of a clock region. The width of a clock region is essentially the same in all cases, regardless of device size
or the mix of resources in the region, enabling repeatable timing results. Each segmented clock region
contains vertical and horizontal clock routing that span its full height and width. These horizontal and
vertical clock routes can be segmented at the clock region boundary to provide a flexible,
high-performance, low-power clock distribution architecture. Figure 2 is a representation of an FPGA
divided into regions.
X-Ref Target - Fig ure 1
Figure 1: FPGA with Columnar Resources
X-Ref Target - Fig ure 2
Figure 2: Column-Based FPGA Divided into Clock Regions
I/O, Clocking, Memory Interface Logic
I/O, Clocking, Memory Interface Logic
CLB, DSP, Block RAM
CLB, DSP, Block RAM
Transceivers
Transceivers
CLB, DSP, Block RAM
DS890_01_101712
Clock Region Width
Clock
Region
Height
DS890_02_121014
For graphical representation only, does not represent a real device.
(I X|L|NX. www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 23
RF Data Converter Subsystem
Zynq UltraScale+ RFSoCs contain an RF data converter subsystem consisting of multiple RF-ADCs and
RF-DACs.
RF-ADCs
The RF-ADCs can be configured individually for real input signals. RF-ADCs in all devices other than the
XCZU43DR can also be configured as a pair for I/Q input signals. The RF-ADC tile has one PLL and a
clocking instance. Decimation filters in the RF-ADCs can operate in varying decimation modes at 80% of
Nyquist bandwidth with 89dB stop-band attenuation. Each RF-ADC contains a 48-bit numerically
controlled oscillator (NCO) and a dedicated high-speed, high-performance, differential input buffer with
on-chip calibrated 100 termination.
RF-DACs
The RF-DACs can be configured individually for real outputs. RF-DACs in all devices other than the
XCZU43DR can also be configured as a pair for I/Q output signal generation. The RF-DAC tile has one PLL
and a clocking instance. Interpolation filters in the RF-DACs can operate in varying interpolation modes at
80% of Nyquist bandwidth with 89dB stop-band attenuation. Each RF-DAC contains a 48-bit NCO.
Soft Decision Forward Error Correction (SD-FEC)
Some members of the Zynq UltraScale+ RFSoC family contain integrated SD-FEC blocks capable of
encoding and decoding using LDPC codes and decoding using Turbo codes.
LDPC Decoding/Encoding
A range of quasi-cyclic codes can be configured over an AXI4-Lite interface. Code parameter memory can
be shared across up to 128 codes. Codes can be selected on a block-by-block basis with the encoder able
to reuse suitable decoder codes. The SD-FEC uses a normalized min-sum decoding algorithm with a
normalization factor programmable from 0.0625 to 1 in increments of 0.0625. There can be between 1 and
63 iterations for each codeword. Early termination is specified for each codeword to be none, one, or both
of the following:
Parity check passes
No change in hard information or parity bits since last operation
Soft or hard outputs are specified for each codeword to include information and optional parity with 6-bit
soft log-likelihood ratio (LLR) on inputs and 8-bit LLR on outputs.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 24
Turbo Decoding
In Turbo mode, the SD-FEC can use the Max, Max Scale, or Max Star algorithms. When using the Max Scale
algorithm, the scale factor is programmable from 0.0625 to 1 in increments of 0.0625. There can be
between 1 and 63 iterations for each codeword, specified using the AXI4-Stream control interface. Early
termination is specified for each codeword to be none, one, or both of the following:
CRC passes
No change in hard decision since last iteration
Soft or hard outputs are specified for each codeword to include systematic and optionally parity 0 and
parity 1 with 8-bit soft LLR on inputs and outputs.
(I X|L|NX. www‘xilinx‘com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 25
Processing System (PS)
Zynq UltraScale+ MPSoCs and RFSoCs consist of a PS coupled with programmable logic. The contents of
the PS varies between the different Zynq UltraScale+ devices. All devices contain an APU, an RPU, and
many peripherals for connecting the multiple processing engines to external components. The EG and EV
devices contain a GPU and the EV devices contain a video codec unit (VCU). The components of the PS are
connected together and to the PL through a multi-layered Arm AMBA AXI non-blocking interconnect that
supports multiple simultaneous master-slave transactions. Traffic through the interconnect can be
regulated by the quality of service (QoS) block in the interconnect. Twelve dedicated AXI 32-bit, 64-bit, or
128-bit ports connect the PL to high-speed interconnect and DDR in the PS via a FIFO interface.
There are four independently controllable power domains: the PL plus three within the PS (full power,
lower power, and battery power domains). Additionally, many peripherals support clock gating and power
gating to further reduce dynamic and static power consumption.
Application Processing Unit (APU)
The APU has a feature-rich dual-core or quad-core Arm Cortex-A53 processor. Cortex-A53 cores are
32-bit/64-bit application processors based on Arm-v8A architecture, offering the best
performance-to-power ratio. The Armv8 architecture supports hardware virtualization. Each of the
Cortex-A53 cores has: 32KB of instruction and data L1 caches, with parity and ECC protection respectively;
a NEON SIMD engine; and a single and double precision floating point unit. In addition to these blocks,
the APU consists of a snoop control unit and a 1MB L2 cache with ECC protection to enhance system-level
performance. The snoop control unit keeps the L1 caches coherent thus eliminating the need of spending
software bandwidth for coherency. The APU also has a built-in interrupt controller supporting virtual
interrupts. The APU communicates to the rest of the PS through 128-bit AXI coherent extension (ACE) port
via Cache Coherent Interconnect (CCI) block, using the System Memory Management Unit (SMMU). The
APU is also connected to the Programmable Logic (PL), through the 128-bit accelerator coherency port
(ACP), providing a low latency coherent port for accelerators in the PL. To support real-time debug and
trace, each core also has an Embedded Trace Macrocell (ETM) that communicates with the Arm
CoreSight™ Debug System.
Real-Time Processing Unit (RPU)
The RPU in the PS contains a dual-core Arm Cortex-R5F PS. Cortex-R5F cores are 32-bit real-time
processor cores based on Arm-v7R architecture. Each of the Cortex-R5F cores has 32KB of level-1 (L1)
instruction and data cache with ECC protection. In addition to the L1 caches, each of the Cortex-R5F cores
also has a 128KB tightly coupled memory (TCM) interface for real-time single cycle access. The RPU also
has a dedicated interrupt controller. The RPU can operate in either split or lock-step mode. In split mode,
both processors run independently of each other. In lock-step mode, they run in parallel with each other,
with integrated comparator logic, and the TCMs are used as 256KB unified memory. The RPU
communicates with the rest of the PS via the 128-bit AXI-4 ports connected to the low power domain
switch. It also communicates directly with the PL through 128-bit low latency AXI-4 ports. To support
real-time debug and trace each core also has an embedded trace macrocell (ETM) that communicates with
the Arm CoreSight Debug System.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 26
External Memory
The PS can interface to many types of external memories through dedicated memory controllers. The
dynamic memory controller supports DDR3, DDR3L, DDR4, LPDDR3, and LPDDR4 memories. The
multi-protocol DDR memory controller can be configured to access a 2GB address space in 32-bit
addressing mode and up to 32GB in 64-bit addressing mode using a single or dual rank configuration of
8-bit, 16-bit, or 32-bit DRAM memories. Both 32-bit and 64-bit bus access modes are protected by ECC
using extra bits.
The SD/eMMC controller supports 1 and 4 bit data interfaces at low, default, high-speed, and
ultra-high-speed (UHS) clock rates. This controller also supports 1-, 4-, or 8-bit-wide eMMC interfaces that
are compliant to the eMMC 4.51 specification. eMMC is one of the primary boot and configuration modes
for Zynq UltraScale+ MPSoCs and RFSoCs and supports boot from managed NAND devices. The controller
has a built-in DMA for enhanced performance.
The Quad-SPI controller is one of the primary boot and configuration devices. It supports 4-byte and
3-byte addressing modes. In both addressing modes, single, dual-stacked, and dual-parallel
configurations are supported. Single mode supports a quad serial NOR flash memory, while in double
stacked and double parallel modes, it supports two quad serial NOR flash memories.
The NAND controller is based on ONFI3.1 specification. It has an 8-pin interface and provides 200Mb/s of
bandwidth in synchronous mode. It supports 24 bits of ECC thus enabling support for SLC NAND
memories. It has two chip-selects to support deeper memory and a built-in DMA for enhanced
performance.
General Connectivity
There are many peripherals in the PS for connecting to external devices over industry standard protocols,
including CAN2.0B, USB, Ethernet, I2C, and UART. Many of the peripherals support clock gating and power
gating modes to reduce dynamic and static power consumption.
USB 3.0/2.0
The pair of USB controllers can be configured as host, device, or On-The-Go (OTG). The core is compliant
to USB 3.0 specification and supports super, high, full, and low speed modes in all configurations. In host
mode, the USB controller is compliant with the Intel XHCI specification. In device mode, it supports up to
12 end points. While operating in USB 3.0 mode, the controller uses the serial transceiver and operates up
to 5.0Gb/s. In USB 2.0 mode, the Universal Low Peripheral Interface (ULPI) is used to connect the controller
to an external PHY operating up to 480Mb/s. The ULPI is also connected in USB 3.0 mode to support
high-speed operations.
Ethernet MAC
The four tri-speed ethernet MACs support 10Mb/s, 100Mb/s, and 1Gb/s operations. The MACs support
jumbo frames and time stamping through the interfaces based on IEEE Std 1588v2. The ethernet MACs can
be connected through the serial transceivers (SGMII), the MIO (RGMII), or through EMIO (GMII). The GMII
interface can be converted to a different interface within the PL.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 27
High-Speed Connectivity
The PS includes four PS-GTR transceivers (transmit and receive), supporting data rates up to 6.0Gb/s and
can interface to the peripherals for communication over PCIe, SATA, USB 3.0, SGMII, and DisplayPort.
PCIe
The integrated block for PCIe is compliant with PCI Express base specification 2.1 and supports x1, x2, and
x4 configurations as root complex or end point, compliant to transaction ordering rules in both
configurations. It has built-in DMA, supports one virtual channel and provides fully configurable base
address registers.
SATA
Users can connect up to two external devices using the two SATA host port interfaces compliant to the
SATA 3.1 specification. The SATA interfaces can operate at 1.5Gb/s, 3.0Gb/s, or 6.0Gb/s data rates and are
compliant with advanced host controller interface (AHCI) version 1.3 supporting partial and slumber
power modes.
DisplayPort
The DisplayPort controller supports up to two lanes of source-only DisplayPort compliant with VESA
DisplayPort v1.2a specification (source only) at 1.62Gb/s, 2.7Gb/s, and 5.4Gb/s data rates. The controller
supports single stream transport (SST); video resolution up to 4Kx2K at a 30Hz frame rate; video formats
Y-only, YCbCr444, YCbCr422, YCbCr420, RGB, YUV444, YUV422, xvYCC, and pixel color depth of 6, 8, 10,
and 12 bits per color component.
Graphics Processing Unit (GPU)
The dedicated Arm Mali-400 MP2 GPU in the PS supports 2D and 3D graphics acceleration up to 1080p
resolution. The Mali-400 supports OpenGL ES 1.1 and 2.0 for 3D graphics and Open VG 1.1 standards for
2D vector graphics. It has a geometry processor (GP) and 2 pixel processors to perform tile rendering
operations in parallel. It has dedicated Memory management units for GP and pixel processors, which
supports 4 KB page size. The GPU also has 64KB level-2 (L2) read-only cache. It supports 4X and 16X Full
scene Anti-Aliasing (FSAA). It is fully autonomous, enabling maximum parallelization between APU and
GPU. It has built-in hardware texture decompression, allowing the texture to remain compressed (in ETC
format) in graphics hardware and decompress the required samples on the fly. It also supports efficient
alpha blending of multiple layers in hardware without additional bandwidth consumption. It has a pixel fill
rate of 2Mpixel/sec/MHz and a triangle rate of 0.1Mvertex/sec/MHz. The GPU supports extensive texture
format for RGBA 8888, 565, and 1556 in Mono 8, 16, and YUV formats. For power sensitive applications,
the GPU supports clock and power gating for each GP, pixel processors, and L2 cache. During power
gating, GPU does not consume any static or dynamic power; during clock gating, it only consumes static
power.
Video Codec Unit (VCU)
The video codec unit (VCU) provides multi-standard video encoding and decoding capabilities, including:
High Efficiency Video Coding (HEVC), i.e., H.265; and Advanced Video Coding (AVC), i.e., H.264 standards.
The VCU is capable of simultaneous encode and decode at rates up to 4Kx2K at 60 frames per second (fps)
(approx. 600Mpixel/sec) or 8Kx4K at a reduced frame rate (~15fps).
(I X|L|NX. www‘xilinx‘com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 28
Input/Output
All UltraScale devices, whether FPGA, MPSoC, or RFSoCs, have I/O pins for communicating to external
components. In addition, in the PS, there are another 78 I/Os that the I/O peripherals use to communicate
to external components, referred to as multiplexed I/O (MIO). If more than 78 pins are required by the I/O
peripherals, the I/O pins in the PL can be used to extend the MPSoC or RFSoC interfacing capability,
referred to as extended MIO (EMIO).
The number of I/O pins in UltraScale FPGAs and in the programmable logic of Zynq UltraScale+ MPSoCs
and RFSoCs varies depending on device and package. Each I/O is configurable and can comply with a large
number of I/O standards. The I/Os are classed as high-range (HR), high-performance (HP), or high-density
(HD). The HR I/Os offer the widest range of voltage support, from 1.2V to 3.3V. The HP I/Os are optimized
for highest performance operation, from 1.0V to 1.8V. The HD I/Os are reduced-feature I/Os organized in
banks of 24, providing voltage support from 1.2V to 3.3V.
All I/O pins are organized in banks, with 52 HP or HR pins per bank or 24 HD pins per bank. Each bank has
one common VCCO output buffer power supply, which also powers certain input buffers. In addition, HR
banks can be split into two half-banks, each with their own VCCO supply. Some single-ended input buffers
require an internally generated or an externally applied reference voltage (VREF). VREF pins can be driven
directly from the PCB or internally generated using the internal VREF generator circuitry present in each
bank.
I/O Electrical Characteristics
Single-ended outputs use a conventional CMOS push/pull output structure driving High towards VCCO or
Low towards ground, and can be put into a high-Z state. The system designer can specify the slew rate and
the output strength. The input is always active but is usually ignored while the output is active. Each pin
can optionally have a weak pull-up or a weak pull-down resistor.
Most signal pin pairs can be configured as differential input pairs or output pairs. Differential input pin
pairs can optionally be terminated with a 100 internal resistor. All UltraScale devices support differential
standards beyond LVDS, including RSDS, BLVDS, differential SSTL, and differential HSTL. Each of the I/Os
supports memory I/O standards, such as single-ended and differential HSTL as well as single-ended and
differential SSTL. UltraScale+ families add support for MIPI with a dedicated D-PHY in the I/O bank.
3-State Digitally Controlled Impedance and Low Power I/O Features
The 3-state Digitally Controlled Impedance (T_DCI) can control the output drive impedance (series
termination) or can provide parallel termination of an input signal to VCCO or split (Thevenin) termination
to VCCO/2. This allows users to eliminate off-chip termination for signals using T_DCI. In addition to board
space savings, the termination automatically turns off when in output mode or when 3-stated, saving
considerable power compared to off-chip termination. The I/Os also have low power modes for IBUF and
IDELAY to provide further power savings, especially when used to implement memory interfaces.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 29
I/O Logic
Input and Output Delay
All inputs and outputs can be configured as either combinatorial or registered. Double data rate (DDR) is
supported by all inputs and outputs. Any input or output can be individually delayed by up to 1,250ps of
delay with a resolution of 5–15ps. Such delays are implemented as IDELAY and ODELAY. The number of
delay steps can be set by configuration and can also be incremented or decremented while in use. The
IDELAY and ODELAY can be cascaded together to double the amount of delay in a single direction.
ISERDES and OSERDES
Many applications combine high-speed, bit-serial I/O with slower parallel operation inside the device. This
requires a serializer and deserializer (SerDes) inside the I/O logic. Each I/O pin possesses an IOSERDES
(ISERDES and OSERDES) capable of performing serial-to-parallel or parallel-to-serial conversions with
programmable widths of 2, 4, or 8 bits. These I/O logic features enable high-performance interfaces, such
as Gigabit Ethernet/1000BaseX/SGMII, to be moved from the transceivers to the SelectIO interface.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 30
High-Speed Serial Transceivers
Serial data transmission between devices on the same PCB, over backplanes, and across even longer distances is becoming increasingly
important for scaling to 100Gb/s and 400Gb/s line cards. Specialized dedicated on-chip circuitry and differential I/O capable of coping with
the signal integrity issues are required at these high data rates.
Four types of transceivers are used in the UltraScale architecture: GTH, GTY, and GTM in FPGAs, GTH and GTY in the PL in MPSoCs and RFSoCs,
and PS-GTR in the PS of MPSoCs and RFSoCs. All transceivers are arranged in groups of four, known as a transceiver Quad. Each serial
transceiver is a combined transmitter and receiver. Table 21 compares the available transceivers.
Table 21: Transceiver Information
Kintex UltraScale Kintex
UltraScale+ Virtex UltraScale Virtex
UltraScale+ Zynq UltraScale+
MPSoCs and RFSoCs
Type GTH GTY GTH GTY GTH GTY GTY GTM PS-GTR GTH GTY
Qty 16–64 0–32 0–44 0–32 20–60 0–60 34–128 0–48 4 0–44 0–28
Max. Data
Rate 16.3Gb/s 16.3Gb/s 16.3Gb/s 32.75Gb/s 16.3Gb/s 30.5Gb/s 32.75Gb/s 58.0Gb/s 6.0Gb/s 16.3Gb/s 32.75Gb/s
Min. Data
Rate 0.5Gb/s 0.5Gb/s 0.5Gb/s 0.5Gb/s 0.5Gb/s 0.5Gb/s 0.5Gb/s 9.8Gb/s 1.25Gb/s 0.5Gb/s 0.5Gb/s
Key Apps
Backplane
HMC Backplane
HMC Backplane
HMC 100G+Optics
Chip-to-Chip
25G+
Backplane
HMC
Backplane
HMC 100G+Optics
Chip-to-Chip
25G+
Backplane
HMC
100G+Optics
Chip-to-Chip
25G+
Backplane
HMC
50G
100G
200G
400G
OTU
PCIe Gen2
USB
Ethernet
Backplane
HMC 100G+Optics
Chip-to-Chip
25G+
Backplane
HMC
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 31
GTH/GTY Transceivers
The serial transmitter and receiver are independent circuits that use an advanced phase-locked loop (PLL)
architecture to multiply the reference frequency input by certain programmable numbers between 4 and
25 to become the bit-serial data clock. Each transceiver has a large number of user-definable features and
parameters. All of these can be defined during device configuration, and many can also be modified
during operation.
Transmitter (GTH/GTY)
The transmitter is fundamentally a parallel-to-serial converter with a conversion ratio of 16, 20, 32, 40, 64,
or 80 for the GTH and 16, 20, 32, 40, 64, 80, 128, or 160 for the GTY. This allows the designer to trade off
datapath width against timing margin in high-performance designs. These transmitter outputs drive the
PC board with a single-channel differential output signal. TXOUTCLK is the appropriately divided serial
data clock and can be used directly to register the parallel data coming from the internal logic. The
incoming parallel data is fed through an optional FIFO and has additional hardware support for the
8B/10B, 64B/66B, or 64B/67B encoding schemes to provide a sufficient number of transitions. The
bit-serial output signal drives two package pins with differential signals. This output signal pair has
programmable signal swing as well as programmable pre- and post-emphasis to compensate for PC board
losses and other interconnect characteristics. For shorter channels, the swing can be reduced to reduce
power consumption.
Receiver (GTH/GTY)
The receiver is fundamentally a serial-to-parallel converter, changing the incoming bit-serial differential
signal into a parallel stream of words, each 16, 20, 32, 40, 64, or 80 bits in the GTH or 16, 20, 32, 40, 64, 80,
128, or 160 for the GTY. This allows the designer to trade off internal datapath width against logic timing
margin. The receiver takes the incoming differential data stream, feeds it through programmable DC
automatic gain control, linear and decision feedback equalizers (to compensate for PC board, cable,
optical and other interconnect characteristics), and uses the reference clock input to initiate clock
recognition. There is no need for a separate clock line. The data pattern uses non-return-to-zero (NRZ)
encoding and optionally ensures sufficient data transitions by using the selected encoding scheme.
Parallel data is then transferred into the device logic using the RXUSRCLK clock. For short channels, the
transceivers offer a special low-power mode (LPM) to reduce power consumption by approximately 30%.
The receiver DC automatic gain control and linear and decision feedback equalizers can optionally
“auto-adapt” to automatically learn and compensate for different interconnect characteristics. This
enables even more margin for 10G+ and 25G+ backplanes.
Out-of-Band Signaling
The transceivers provide out-of-band (OOB) signaling, often used to send low-speed signals from the
transmitter to the receiver while high-speed serial data transmission is not active. This is typically done
when the link is in a powered-down state or has not yet been initialized. This benefits PCIe and SATA/SAS
and QPI applications.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 32
GTM Transceivers
The serial transmitter and receiver are independent circuits that use an advanced phase-locked loop (PLL)
architecture to multiply the reference frequency input by certain programmable numbers between 16 and
160 to become the bit-serial data clock. Each transceiver has a large number of user-definable features
and parameters. All of these can be defined during device configuration, and many can also be modified
during operation.
Transmitter (GTM)
The transmitter is fundamentally a parallel-to-serial converter. These transmitter outputs drive pulse
amplitude modulated signals with either 4 levels (PAM4) or 2 levels (NRZ) to the PC board with a
single-channel differential output signal. TXOUTCLK is the appropriately divided serial data clock and can
be used directly to register the parallel data coming from the internal logic. The incoming parallel data can
optionally leverage a Reed-Solomon, RS(544,514) Forward Error Correction encoder and/or 64b66b data
encoder. The bit-serial output signal drives two package pins with PAM4 differential signals. This output
signal pair has programmable signal swing as well as programmable pre- and post-emphasis to
compensate for PC board losses and other interconnect characteristics. For shorter channels, the swing
can be reduced to reduce power consumption.
Receiver (GTM)
The receiver is fundamentally a serial-to-parallel converter, changing the incoming PAM4 differential
signal into a parallel stream of words. The receiver takes the incoming differential data stream, feeds it
through automatic gain compensation (AGC) and a continuous time linear equalizer (CTLE), after which it
is sampled with a high-speed analog to digital converter. Further equalization is completed digitally via a
decision feedback equalizer (DFE) and feed forward equalizer (FFE) implemented in DSP logic before the
recovered bits are parallelized and provided to the PCS. This equalization provides the flexibility to receive
data over channels ranging from very short chip-to-chip to high loss backplane applications across all
supported rates. Clock recovery circuitry generates a clock derived from the high-speed PLL to clock in
serial data and provides an appropriately divided and phase-aligned clock, RXOUTCLK, to internal logic.
Parallel data can optionally be transferred into an RS-FEC and/or 64b/66b decoder before being presented
to the FPGA interface.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 33
Integrated Interface Blocks for PCI Express Designs
The UltraScale architecture uses three different integrated blocks for PCIe. The integrated block on
UltraScale devices is compliant with the PCI Express Base Specification v3.1 and can operate with a lane
width of up to x8 and a speed up to 8.0GT/s (Gen3).
UltraScale+ devices use two types of integrated blocks: PCIE4 and PCIE4C, with most using the PCIE4
blocks. PCIE4 blocks are compliant to PCI Express Base Specification v3.1 and support up to Gen3 x16, and
can also be configured for lower link width and speeds. The PCIE4 block does not support Gen4 operation.
Some devices, such as Virtex UltraScale+ HBM FPGAs, have only PCIE4C blocks or a combination of both
PCIE4 and PCIE4C blocks. The PCIE4C block can implement both PCI Express and CCIX while PCIE4 blocks
can implement only PCI Express.
PCIE4C blocks are compliant to the PCI Express Base Specification v3.1 supporting up to 8.0GT/s (Gen3)
and compatible with PCI Express Base Specification v4.0 supporting up to 16.0GT/s (Gen4). PCIE4C blocks
are also compliant with CCIX Base Specification v1.0 Version 0.9, supporting speeds up to 16.0GT/s.
PCIE4C blocks support up to 16 lanes at Gen3 or up to 8 lanes at Gen4 and can be configured for lower link
widths and speeds to conserve resources and power.
All integrated blocks for PCIe in the UltraScale architecture can be configured as Endpoint or Root Port.
The Root Port can be used to build the basis for a compatible Root Complex, to allow custom chip-to-chip
communication via the PCI Express protocol, and to attach ASSP Endpoint devices, such as Ethernet
Controllers or Fibre Channel HBAs, to the FPGA, MPSoC, or RFSoC.
The maximum lane widths and data rates per family are listed in Table 2 2.
For high-performance applications, advanced buffering techniques of the block offer a flexible maximum
payload size of up to 1,024 bytes. The integrated block interfaces to the integrated high-speed
transceivers for serial connectivity and to block RAMs for data buffering. Combined, these elements
implement the Physical Layer, Data Link Layer, and Transaction Layer of the PCI Express protocol.
Xilinx provides LogiCORE™ IP options to configure the integrated blocks for PCIe in all UltraScale and
UltraScale+ devices. This includes AXI Streaming interfaces at the PCIe packet level and more advanced IP
such as AXI to PCIe Bridges and DMA engines. This IP gives the designer control over many configurable
parameters such as link width and speed, maximum payload size, and reference clock frequency. For a
complete list of features that can be configured for each of the IP, go to the specific Product Guide.
Table 22: PCIe Maximum Configurations
Kintex
UltraScale Kintex
UltraScale+ Virtex
UltraScale Virtex
UltraScale+
Zynq
UltraScale+
MPSoC
Zynq
UltraScale+
RFSoC
Gen1 (2.5GT/s) x8 x16 x8 x16 x16 x16
Gen2 (5GT/s) x8 x16 x8 x16 x16 x16
Gen3 (8GT/s) x8 x16 x8 x16 x16 x16
Gen4 (16GT/s)(1) x8 x8 x8
Notes:
1. Transceivers in UltraScale+ devices support 16.0GT/s. Soft PCIe IP is available from Xilinx partners.
(I X|L|NX. www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 34
Cache Coherent Interconnect for Accelerators (CCIX)
CCIX is a chip-to-chip interconnect operating at data rates up to 25Gb/s that allows two or more devices
to share memory in a cache coherent manner. Using PCIe for the transport layer, CCIX can operate at
several standard data rates (2.5, 5, 8, and 16Gb/s) with an additional high-speed 25Gb/s option. The
specification employs a subset of full coherency protocols and ensures that FPGAs used as accelerators
can coherently share data with processors using different instruction set architectures.
PCIE4C blocks support CCIX data rates up to 16Gb/s and contain one CCIX port. Each CCIX port requires
the use of one integrated block for PCIe. If not used with a CCIX port, the integrated blocks for PCIe can
still be used for PCIe communication.
Integrated Block for Interlaken
Some UltraScale architecture-based devices include integrated blocks for Interlaken. Interlaken is a
scalable chip-to-chip interconnect protocol designed to enable transmission speeds from 10Gb/s to
150Gb/s. The Interlaken integrated block in the UltraScale architecture is compliant to revision 1.2 of the
Interlaken specification with data striping and de-striping across 1 to 12 lanes. Permitted configurations
are: 1 to 12 lanes at up to 12.5Gb/s and 1 to 6 lanes at up to 25.78125Gb/s, enabling flexible support for
up to 150Gb/s per integrated block. With multiple Interlaken blocks, certain UltraScale devices enable
easy, reliable Interlaken switches and bridges.
Integrated Block for 100G Ethernet
Compliant to the IEEE Std 802.3ba, the 100G Ethernet integrated blocks in the UltraScale architecture
provide low latency 100Gb/s Ethernet ports with a wide range of user customization and statistics
gathering. With support for 10 x 10.3125Gb/s (CAUI) and 4 x 25.78125Gb/s (CAUI-4) configurations, the
integrated block includes both the 100G MAC and PCS logic with support for IEEE Std 1588v2 1-step and
2-step hardware timestamping.
In UltraScale+ devices, the 100G Ethernet blocks contain a Reed Solomon Forward Error Correction
(RS-FEC) block, compliant to IEEE Std 802.3bj, that can be used with the Ethernet block or stand alone in
user applications. These families also support OTN mapping mode in which the PCS can be operated
without using the MAC.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 35
Stacked Silicon Interconnect (SSI) Technology
Many challenges associated with creating high-capacity devices are addressed by Xilinx with the second generation of the pioneering 3D SSI
technology. SSI technology enables multiple super-logic regions (SLRs) to be combined on a passive interposer layer, using proven
manufacturing and assembly techniques from industry leaders, to create a single device with more than 20,000 low-power inter-SLR
connections. Dedicated interface tiles within the SLRs provide ultra-high bandwidth, low latency connectivity to other SLRs. Ta b l e 2 3 shows
the number of SLRs in devices that use SSI technology and their dimensions.
Table 23: UltraScale and UltraScale+ 3D IC SLR Count and Dimensions
Kintex
UltraScale Virtex
UltraScale Virtex
UltraScale+
Device KU085 KU115 VU125 VU160 VU190 VU440 VU5P VU7P VU9P VU11P VU13P VU19P VU31P VU33P VU35P VU37P VU45P VU47P VU57P
# SLRs 2223332233441123233
SLR Width
(in regions) 6666696668898888888
SLR Height
(in regions) 5555555554454444444
(I X|L|NX. www‘xilinx‘com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 36
Clock Management
The clock generation and distribution components in UltraScale devices are located adjacent to the
columns that contain the memory interface and input and output circuitry. This tight coupling of clocking
and I/O provides low-latency clocking to the I/O for memory interfaces and other I/O protocols. Within
every clock management tile (CMT) resides one mixed-mode clock manager (MMCM), two PLLs, clock
distribution buffers and routing, and dedicated circuitry for implementing external memory interfaces.
Mixed-Mode Clock Manager
The mixed-mode clock manager (MMCM) can serve as a frequency synthesizer for a wide range of
frequencies and as a jitter filter for incoming clocks. At the center of the MMCM is a voltage-controlled
oscillator (VCO), which speeds up and slows down depending on the input voltage it receives from the
phase frequency detector (PFD).
There are three sets of programmable frequency dividers (D, M, and O) that are programmable by
configuration and during normal operation via the Dynamic Reconfiguration Port (DRP). The pre-divider D
reduces the input frequency and feeds one input of the phase/frequency comparator. The feedback
divider M acts as a multiplier because it divides the VCO output frequency before feeding the other input
of the phase comparator. D and M must be chosen appropriately to keep the VCO within its specified
frequency range. The VCO has eight equally-spaced output phases (0°, 45°, 90°, 135°, 180°, 225°, 270°, and
315°). Each phase can be selected to drive one of the output dividers, and each divider is programmable
by configuration to divide by any integer from 1 to 128.
The MMCM has three input-jitter filter options: low bandwidth, high bandwidth, or optimized mode.
Low-Bandwidth mode has the best jitter attenuation. High-Bandwidth mode has the best phase offset.
Optimized mode allows the tools to find the best setting.
The MMCM can have a fractional counter in either the feedback path (acting as a multiplier) or in one
output path. Fractional counters allow non-integer increments of 1/8 and can thus increase frequency
synthesis capabilities by a factor of 8. The MMCM can also provide fixed or dynamic phase shift in small
increments that depend on the VCO frequency. At 1,600MHz, the phase-shift timing increment is 11.2ps.
PLL
With fewer features than the MMCM, the two PLLs in a clock management tile are primarily present to
provide the necessary clocks to the dedicated memory interface circuitry. The circuit at the center of the
PLLs is similar to the MMCM, with PFD feeding a VCO and programmable M, D, and O counters. There are
two divided outputs to the device fabric per PLL as well as one clock plus one enable signal to the memory
interface circuitry.
Zynq UltraScale+ MPSoCs and RFSoCs are equipped with five additional PLLs in the PS for independently
configuring the four primary clock domains with the PS: the APU, the RPU, the DDR controller, and the I/O
peripherals.
(I X|L|NX. www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 37
Clock Distribution
Clocks are distributed throughout UltraScale devices via buffers that drive a number of vertical and
horizontal tracks. There are 24 horizontal clock routes per clock region and 24 vertical clock routes per
clock region with 24 additional vertical clock routes adjacent to the MMCM and PLL. Within a clock region,
clock signals are routed to the device logic (CLBs, etc.) via 16 gateable leaf clocks.
Several types of clock buffers are available. The BUFGCE and BUFCE_LEAF buffers provide clock gating at
the global and leaf levels, respectively. BUFGCTRL provides glitchless clock muxing and gating capability.
BUFGCE_DIV has clock gating capability and can divide a clock by 1 to 8. BUFG_GT performs clock division
from 1 to 8 for the transceiver clocks. In MPSoCs and RFSoCs, clocks can be transferred from the PS to the
PL using dedicated buffers.
Memory Interfaces
Memory interface data rates continue to increase, driving the need for dedicated circuitry that enables
high performance, reliable interfacing to current and next-generation memory technologies. Every
UltraScale device includes dedicated physical interfaces (PHY) blocks located between the CMT and I/O
columns that support implementation of high-performance PHY blocks to external memories such as
DDR4, DDR3, QDRII+, and RLDRAM3. The PHY blocks in each I/O bank generate the address/control and
data bus signaling protocols as well as the precision clock/data alignment required to reliably
communicate with a variety of high-performance memory standards. Multiple I/O banks can be used to
create wider memory interfaces.
As well as external parallel memory interfaces, UltraScale architecture-based devices can communicate to
external serial memories, such as Hybrid Memory Cube (HMC), via the high-speed serial transceivers. All
transceivers in the UltraScale architecture support the HMC protocol, up to 15Gb/s line rates. UltraScale
devices support the highest bandwidth HMC configuration of 64 lanes with a single FPGA.
Block RAM
Every UltraScale architecture-based device contains a number of 36 Kb block RAMs, each with two
completely independent ports that share only the stored data. Each block RAM can be configured as one
36Kb RAM or two independent 18Kb RAMs. Each memory access, read or write, is controlled by the clock.
Connections in every block RAM column enable signals to be cascaded between vertically adjacent block
RAMs, providing an easy method to create large, fast memory arrays, and FIFOs with greatly reduced
power consumption.
All inputs, data, address, clock enables, and write enables are registered. The input address is always
clocked (unless address latching is turned off), retaining data until the next operation. An optional output
data pipeline register allows higher clock rates at the cost of an extra cycle of latency. During a write
operation, the data output can reflect either the previously stored data or the newly written data, or it can
remain unchanged. Block RAM sites that remain unused in the user design are automatically powered
(I X|L|NX. www‘xilinx‘com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 38
down to reduce total power consumption. There is an additional pin on every block RAM to control the
dynamic power gating feature.
Programmable Data Width
Each port can be configured as 32K × 1; 16K × 2; 8K × 4; 4K × 9 (or 8); 2K × 18 (or 16); 1K × 36 (or 32); or
512 × 72 (or 64). Whether configured as block RAM or FIFO, the two ports can have different aspect ratios
without any constraints. Each block RAM can be divided into two completely independent 18Kb block
RAMs that can each be configured to any aspect ratio from 16K × 1 to 512 × 36. Everything described
previously for the full 36Kb block RAM also applies to each of the smaller 18Kb block RAMs. Only in simple
dual-port (SDP) mode can data widths of greater than 18bits (18Kb RAM) or 36 bits (36Kb RAM) be
accessed. In this mode, one port is dedicated to read operation, the other to write operation. In SDP mode,
one side (read or write) can be variable, while the other is fixed to 32/36 or 64/72. Both sides of the
dual-port 36Kb RAM can be of variable width.
Error Detection and Correction
Each 64-bit-wide block RAM can generate, store, and utilize eight additional Hamming code bits and
perform single-bit error correction and double-bit error detection (ECC) during the read process. The ECC
logic can also be used when writing to or reading from external 64- to 72-bit-wide memories.
FIFO Controller
Each block RAM can be configured as a 36Kb FIFO or an 18Kb FIFO. The built-in FIFO controller for
single-clock (synchronous) or dual-clock (asynchronous or multirate) operation increments the internal
addresses and provides four handshaking flags: full, empty, programmable full, and programmable empty.
The programmable flags allow the user to specify the FIFO counter values that make these flags go active.
The FIFO width and depth are programmable with support for different read port and write port widths on
a single FIFO. A dedicated cascade path allows for easy creation of deeper FIFOs.
UltraRAM
UltraRAM is a high-density, dual-port, synchronous memory block available in UltraScale+ devices. Both
of the ports share the same clock and can address all of the 4K x 72 bits. Each port can independently read
from or write to the memory array. UltraRAM supports two types of write enable schemes. The first mode
is consistent with the block RAM byte write enable mode. The second mode allows gating the data and
parity byte writes separately. UltraRAM blocks can be connected together to create larger memory arrays.
Dedicated routing in the UltraRAM column enables the entire column height to be connected together. If
additional density is required, all the UltraRAM columns in an SLR can be connected together with a few
fabric resources to create single instances of RAM approximately 100Mb in size. This makes UltraRAM an
ideal solution for replacing external memories such as SRAM. Cascadable anywhere from 288Kb to 100Mb,
UltraRAM provides the flexibility to fulfill many different memory requirements.
(I X|L|NX. www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 39
Error Detection and Correction
Each 64-bit-wide UltraRAM can generate, store and utilize eight additional Hamming code bits and
perform single-bit error correction and double-bit error detection (ECC) during the read process.
High Bandwidth Memory (HBM)
Virtex UltraScale+ HBM devices incorporate 4GB or 8GB HBM stacks adjacent to the FPGA die. Using
stacked silicon interconnect technology, the FPGA communicates to the HBM stacks through memory
controllers that connect to dedicated low-inductance interconnect in the silicon interposer. Each Virtex
UltraScale+ HBM FPGA contains one or two HBM stacks, resulting in up to 16GB of HBM per FPGA.
The FPGA has 32 HBM AXI interfaces used to communicate with the HBM. Through a built-in switch
mechanism, any of the 32 HBM AXI interfaces can access any memory address on either one or both of the
HBM stacks due to the flexible addressing feature. This flexible connection between the FPGA and the
HBM stacks results in easy floorplanning and timing closure. The memory controllers perform read and
write reordering to improve bus efficiency. Data integrity is ensured through error checking and correction
(ECC) circuitry.
Configurable Logic Block
Every Configurable Logic Block (CLB) in the UltraScale architecture contains 8 LUTs and 16 flip-flops. The
LUTs can be configured as either one 6-input LUT with one output, or as two 5-input LUTs with separate
outputs but common inputs. Each LUT can optionally be registered in a flip-flop. In addition to the LUTs
and flip-flops, the CLB contains arithmetic carry logic and multiplexers to create wider logic functions.
Each CLB contains one slice. There are two types of slices: SLICEL and SLICEM. LUTs in the SLICEM can be
configured as 64-bit RAM, as 32-bit shift registers (SRL32), or as two SRL16s. CLBs in the UltraScale
architecture have increased routing and connectivity compared to CLBs in previous-generation Xilinx
devices. They also have additional control signals to enable superior register packing, resulting in overall
higher device utilization.
Interconnect
Various length vertical and horizontal routing resources in the UltraScale architecture that span 1, 2, 4, 5,
12, or 16 CLBs ensure that all signals can be transported from source to destination with ease, providing
support for the next generation of wide data buses to be routed across even the highest capacity devices
while simultaneously improving quality of results and software run time.
(I XILINX www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 40
Digital Signal Processing
DSP applications use many binary multipliers and accumulators, best implemented in dedicated DSP
slices. All UltraScale devices have many dedicated, low-power DSP slices, combining high speed with small
size while retaining system design flexibility.
Each DSP slice fundamentally consists of a dedicated 27 × 18 bit twos complement multiplier and a 48-bit
accumulator. The multiplier can be dynamically bypassed, and two 48-bit inputs can feed a
single-instruction-multiple-data (SIMD) arithmetic unit (dual 24-bit add/subtract/accumulate or quad
12-bit add/subtract/accumulate), or a logic unit that can generate any one of ten different logic functions
of the two operands.
The DSP includes an additional pre-adder, typically used in symmetrical filters. This pre-adder improves
performance in densely packed designs and reduces the DSP slice count by up to 50%. The 96-bit-wide
XOR function, programmable to 12, 24, 48, or 96-bit widths, enables performance improvements when
implementing forward error correction and cyclic redundancy checking algorithms.
The DSP also includes a 48-bit-wide pattern detector that can be used for convergent or symmetric
rounding. The pattern detector is also capable of implementing 96-bit-wide logic functions when used in
conjunction with the logic unit.
The DSP slice provides extensive pipelining and extension capabilities that enhance the speed and
efficiency of many applications beyond digital signal processing, such as wide dynamic bus shifters,
memory address generators, wide bus multiplexers, and memory-mapped I/O register files. The
accumulator can also be used as a synchronous up/down counter.
System Monitor
The System Monitor blocks in the UltraScale architecture are used to enhance the overall safety, security,
and reliability of the system by monitoring the physical environment via on-chip power supply and
temperature sensors and external channels to the ADC.
All UltraScale architecture-based devices contain at least one System Monitor. The System Monitor in
UltraScale+ FPGAs and the PL of Zynq UltraScale+ MPSoCs and RFSoCs is similar to the Kintex UltraScale
and Virtex UltraScale devices but with additional features including a PMBus interface.
Zynq UltraScale+ MPSoCs contain an additional System Monitor block in the PS. See Tab l e 24 .
In FPGAs and the PL of the MPSoCs and RFSoCs, sensor outputs and up to 17 user-allocated external
analog inputs are digitized using a 10-bit 200 kilo-sample-per-second (kSPS) ADC, and the measurements
Table 24: Key System Monitor Features
Kintex UltraScale
Virtex UltraScale
Kintex UltraScale+
Virtex UltraScale+
Zynq UltraScale+ PL Zynq UltraScale+ PS
ADC 10-bit 200kSPS 10-bit 200kSPS 10-bit 1MSPS
Interfaces JTAG, I2C, DRP JTAG, I2C, DRP, PMBus APB
(I XILINX hitecture-b ndard - G is requir gorithm UGS7O www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 41
are stored in registers that can be accessed via internal FPGA (DRP), JTAG, PMBus, or I2C interfaces. The
I2C interface and PMBus allow the on-chip monitoring to be easily accessed by the System Manager/Host
before and after device configuration.
The System Monitor in the PS MPSoC and RFSoC uses a 10-bit, 1 mega-sample-per-second (MSPS) ADC to
digitize the sensor outputs. The measurements are stored in registers and are accessed via the Advanced
Peripheral Bus (APB) interface by the processors and the platform management unit (PMU) in the PS.
Configuration
The UltraScale architecture-based devices store their customized configuration in SRAM-type internal
latches. The configuration storage is volatile and must be reloaded whenever the device is powered up.
This storage can also be reloaded at any time. Several methods and data formats for loading configuration
are available, determined by the mode pins, with more dedicated configuration datapath pins to simplify
the configuration process.
UltraScale architecture-based devices support secure and non-secure boot with optional Advanced
Encryption Standard - Galois/Counter Mode (AES-GCM) decryption and authentication logic. If only
authentication is required, the UltraScale architecture provides an alternative form of authentication in the
form of RSA algorithms. For RSA authentication support in the Kintex UltraScale and Virtex UltraScale
families, go to UG570, UltraScale Architecture Configuration User Guide.
UltraScale architecture-based devices also have the ability to select between multiple configurations, and
support robust field-update methodologies. This is especially useful for updates to a design after the end
product has been shipped. Designers can release their product with an early version of the design, thus
getting their product to market faster. This feature allows designers to keep their customers current with
the most up-to-date design while the product is already deployed in the field.
Booting MPSoCs and RFSoCs
Zynq UltraScale+ MPSoCs and RFSoCs use a multi-stage boot process that supports both a non-secure
and a secure boot. The PS is the master of the boot and configuration process. For a secure boot, the
AES-GCM, SHA-3/384 decryption/authentication, and 4096-bit RSA blocks decrypt and authenticate the
image.
Upon reset, the device mode pins are read to determine the primary boot device to be used: NAND,
Quad-SPI, SD, eMMC, or JTAG. JTAG can only be used as a non-secure boot source and is intended for
debugging purposes. One of the CPUs, Cortex-A53 or Cortex-R5F, executes code out of on-chip ROM and
copies the first stage boot loader (FSBL) from the boot device to the on-chip memory (OCM).
After copying the FSBL to OCM, the processor executes the FSBL. Xilinx supplies example FSBLs or users
can create their own. The FSBL initiates the boot of the PS and can load and configure the PL, or
configuration of the PL can be deferred to a later stage. The FSBL typically loads either a user application
or an optional second stage boot loader (SSBL) such as U-Boot. Users obtain example SSBL from Xilinx or
a third party, or they can create their own SSBL. The SSBL continues the boot process by loading code from
any of the primary boot devices or from other sources such as USB, Ethernet, etc. If the FSBL did not
configure the PL, the SSBL can do so, or again, the configuration can be deferred to a later stage.
(I X|L|NX. www‘xilinx‘com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 42
The static memory interface controller (NAND, eMMC, or Quad-SPI) is configured using default settings.
To improve device configuration speed, these settings can be modified by information provided in the
boot image header. The ROM boot image is not user readable or executable after boot.
Configuring FPGAs
The SPI (serial NOR) interface (x1, x2, x4, and dual x4 modes) and the BPI (parallel NOR) interface (x8 and
x16 modes) are two common methods used for configuring the FPGA. Users can directly connect an SPI or
BPI flash to the FPGA, and the FPGA's internal configuration logic reads the bitstream out of the flash and
configures itself, eliminating the need for an external controller. The FPGA automatically detects the bus
width on the fly, eliminating the need for any external controls or switches. Bus widths supported are x1,
x2, x4, and dual x4 for SPI, and x8 and x16 for BPI. The larger bus widths increase configuration speed and
reduce the amount of time it takes for the FPGA to start up after power-on.
In master mode, the FPGA can drive the configuration clock from an internally generated clock, or for
higher speed configuration, the FPGA can use an external configuration clock source. This allows
high-speed configuration with the ease of use characteristic of master mode. Slave modes up to 32 bits
wide that are especially useful for processor-driven configuration are also supported by the FPGA. In
addition, the new media configuration access port (MCAP) provides a direct connection between the
integrated block for PCIe and the configuration logic to simplify configuration over PCIe.
SEU detection and mitigation (SEM) IP, RSA authentication, post-configuration CRC, and Security Monitor
(SecMon) IP are not supported in the KU025 FPGA.
Packaging
The UltraScale devices are available in a variety of organic flip-chip and lidless flip-chip packages
supporting different quantities of I/Os and transceivers. Maximum supported performance can depend on
the style of package and its material. Always refer to the specific device data sheet for performance
specifications by package type.
In flip-chip packages, the silicon device is attached to the package substrate using a high-performance
flip-chip process. Decoupling capacitors are mounted on the package substrate to optimize signal
integrity under simultaneous switching of outputs (SSO) conditions.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 43
Ordering Information
Table 25 shows the speed and temperature grades available in the different device families. VCCINT supply
voltage is listed in parentheses.
Table 25: Speed Grade and Temperature Grade
Device
Family XC
Devices
Speed Grade and Temperature Grade
Commercial
(C) Extended
(E) Industrial
(I)
0°C to +85°C 0°C to +100°C(1) 0°C to +110°C –40°C to +100°C
Kintex
UltraScale All
-3E(2) (1.0V)
-2E (0.95V) -2I (0.95V)
-1C (0.95V) -1I (0.95V)
-1LI(2) (0.95V or 0.90V)
Kintex
UltraScale+ All
-3E (0.90V)
-2E (0.85V) -2I (0.85V)
-2LE(3) (0.85V or 0.72V)
-1E (0.85V) -1I (0.85V)
-1LI (0.85V or 0.72V)
Virtex
UltraScale
VU065
VU080
VU095
VU125
VU160
VU190
-3E (1.0V)
-2E (0.95V) -2I (0.95V)
-1HE (0.95V or 1.0V) -1I (0.95V)
VU440
-3E (1.0V)
-2E (0.95V) -2I (0.95V)
-1C (0.95V) -1I (0.95V)
Virtex
UltraScale+
VU3P
VU5P
VU7P
VU9P
VU11P
VU13P
VU23P
VU27P
VU29P
-3E (0.90V)
-2E (0.85V) -2I (0.85V)
-2LE(3) (0.85V or 0.72V)
-1E (0.85V) -1I (0.85V)
VU19P -2E (0.85V)
-1E (0.85V)
VU31P
VU33P
VU35P
VU37P
VU45P
VU47P
VU57P
-3E (0.90V)
-2E (0.85V)
-2LE(3)(4) (0.85V or 0.72V)
-1E (0.85V)
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 44
Zynq
UltraScale+
CG
Devices
-2E (0.85V) -2I (0.85V)
-2LE(3)(5) (0.85V or 0.72V)
-1E (0.85V) -1I (0.85V)
-1LI(5) (0.85V or 0.72V)
ZU2EG
ZU3EG
-2E (0.85V) -2I (0.85V)
-2LE(3)(5) (0.85V or 0.72V)
-1E (0.85V) -1I (0.85V)
-1LI(5) (0.85V or 0.72V)
ZU4EG
ZU5EG
ZU6EG
ZU7EG
ZU9EG
ZU11EG
ZU15EG
ZU17EG
ZU19EG
-3E (0.90V)
-2E (0.85V) -2I (0.85V)
-2LE(3)(5) (0.85V or 0.72V)
-1E (0.85V) -1I (0.85V)
-1LI(5) (0.85V or 0.72V)
EV
Devices
-3E (0.90V)
-2E (0.85V) -2I (0.85V)
-2LE(3)(5) (0.85V or 0.72V)
-1E (0.85V) -1I (0.85V)
-1LI(5) (0.85V or 0.72V)
ZU21DR
ZU25DR
ZU27DR
ZU28DR
ZU29DR
-2E (0.85V) -2I (0.85V)
-2LE(3)(5) (0.85V or 0.72V) -2LI (0.72V)(6)
-1E (0.85V) -1I (0.85V)
-1LI(5) (0.85V or 0.72V)
ZU39DR -2I (0.85V)
-2LI (0.72V)(6)
ZU42DR
ZU43DR
ZU46DR
ZU47DR
ZU48DR
ZU49DR
-2E (0.85V) -2I (0.85V)
-2LI (0.72V)(6)
-1E (0.85V) -1I (0.85V)
-1LI(5) (0.72V)
Table 25: Speed Grade and Temperature Grade (Cont’d)
Device
Family XC
Devices
Speed Grade and Temperature Grade
Commercial
(C) Extended
(E) Industrial
(I)
0°C to +85°C 0°C to +100°C(1) 0°C to +110°C –40°C to +100°C
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 45
Notes:
1. The recommended maximum operating temperature for high-bandwidth memory is 95°C.
2. KU025 and KU095 are not available in -3E or -1LI speed/temperature grades.
3. In -2LE speed/temperature grade, devices can operate for a limited time with junction temperature of 110°C. Timing
parameters adhere to the same speed file at 110°C as they do below 110°C, regardless of operating voltage (nominal at
0.85V or low voltage at 0.72V). Operation at 110°C Tj is limited to 1% of the device lifetime and can occur sequentially
or at regular intervals as long as the total time does not exceed 1% of device lifetime.
4. Devices with HBM and labeled with the speed/temperature grade of -2LE can operate for a limited time at a junction
temperature between 95°C and 105°C. HBM operation up to Tj = 105°C is limited to 4.1% of the device lifetime and can
occur sequentially or at regular intervals as long as the total time does not exceed 4.1% of the device lifetime, and for no
longer than 96 hours at a time. While operating the HBM above 95°C, the refresh rate must be at least 4x the refresh rate
at 95°C.
5. In Zynq UltraScale+ MPSoCs and RFSoCs, when operating the PL at low voltage (0.72V), the PS operates at nominal
voltage (0.85V).
6. In -2LI speed/temperature grade, devices can operate for a limited time with junction temperature of 110°C. Timing
parameters adhere to the same speed file at 110°C as they do below 110°C. Operation at 110°C Tj is limited to 5% of the
device lifetime and can occur sequentially or at regular intervals as long as the total time does not exceed 5% of device
lifetime.
Table 25: Speed Grade and Temperature Grade (Cont’d)
Device
Family XC
Devices
Speed Grade and Temperature Grade
Commercial
(C) Extended
(E) Industrial
(I)
0°C to +85°C 0°C to +100°C(1) 0°C to +110°C –40°C to +100°C
(I XILINX, package UGS75 www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 46
The ordering information shown in Figure 3 applies to all packages in the Kintex UltraScale and Virtex
UltraScale FPGAs. Refer to the Package Marking section of UG575, UltraScale and UltraScale+ FPGAs
Packaging and Pinouts User Guide for a more detailed explanation of the device markings.
X-Ref Target - Fig ure 3
Figure 3: Kintex UltraScale and Virtex UltraScale FPGA Ordering Information
XC
Example:
Xilinx Commercial
040
Value Index
KU: Kintex UltraScale
VU: Virtex UltraScale
Speed Grade:
-1: Slowest
-L1: Low Power
-H1: Slowest or Mid
-2: Mid
-3: Fastest
Temperature Grade
C: Commercial
E: Extended
I: Industrial
F: Lid
L: Lid SSI
B: Bare-die
Package Designator and Pin Count
(Footprint Identifier)
DS890_03_092917
1) -L1 and -H1 are the ordering codes for the -1L and -1H speed grades, respectively.
2) See UG575: UltraScale and UltraScale+ FPGAs Packaging and Pinouts User Guide for more information.
KU -1 V A1156 C
FF
V: RoHS 6/6
G: RoHS 6/6 with Exemption 15
F: Flip-chip with 1.0mm Ball Pitch
S: Flip-chip with 0.8mm Ball Pitch
WE : WWI
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 47
The ordering information shown in Figure 4 applies to all packages in the Kintex UltraScale+ and Virtex
UltraScale+ FPGAs, and Figure 5 applies to Zynq UltraScale+MPSoCs and RFSoCs.
The -1L and -2L speed grades in the UltraScale+ families can run at one of two different VCCINT operating
voltages. At 0.72V, they operate at similar performance to the Kintex UltraScale and Virtex UltraScale
devices with up to 30% reduction in power consumption. At 0.85V, they consume similar power to the
Kintex UltraScale and Virtex UltraScale devices, but operate over 30% faster.
X-Ref Target - Fig ure 4
Figure 4: UltraScale+ FPGA Ordering Information
X-Ref Target - Fig ure 5
Figure 5: Zynq UltraScale+ MPSoC and RFSoC Ordering Information
XC
Example:
Xilinx Commercial
7
KU: Kintex UltraScale
VU: Virtex UltraScale
Speed Grade:
-1: Slowest
-L1: Low Power
-2: Mid
-L2: Low Power
-3: Fastest
Temperature Grade
E: Extended
I: Industrial
F: Lid
L: Lid SSI
B: Bare-die
S: Lidless Stiffener
H: Overhang SSI
I: Overhang Lidless Stiffener
Package Designator and Pin Count
(Footprint Identifier)
F: Flip-chip with 1.0mm Ball Pitch
S: Flip-chip with 0.8mm Ball Pitch
V: Flip-chip with 0.92mm Ball Pitch
DS890_04_043020
1) -L1 and -L2 are the ordering codes for the low power -1L and -2L speed grades, respectively.
VU -1 V A2104 EFL
V: RoHS 6/6
G: RoHS 6/6 with Exemption 15
P
Value Index
+ (Plus)
XC
Example:
Xilinx Commercial
7
ZU: Zynq UltraScale+
Speed Grade
-1: Slowest
-L1: Low Power
-2: Mid
-L2: Low Power
-3: Fastest
Temperature Grade
E: Extended
I: Industrial
F: Lid
S: Lidless Stiffener
B: Bare-die
Package Designator and Pin Count
(Footprint Identifier)
F: Flip-chip with 1.0mm Ball Pitch
S: Flip-chip with 0.8mm Ball Pitch
DS890_05_032118
1) -L1 and -L2 are the ordering codes for the low power -1L and -2L speed grades, respectively.
ZU -1 V C1156 EFF
V: RoHS 6/6
E
Value Index
Processor System Identifier
C: Dual APU, Dual RPU
D: Quad APU; Dual RPU
E: Quad APU, Dual RPU, Single GPU
V
Engine Type
G: General Purpose
R: RF Signal
V: Video
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 48
Revision History
The following table shows the revision history for this document:
Date Version Description of Revisions
09/14/2020 3.14 Added ZU42DR throughout document.
07/21/2020 3.13 Added KU19P throughout the document. Updated Table 21 and Table 22.
06/25/2020 3.12 Added VU57P throughout the document. Updated RF Data Converter Subsystem
Overview, RF-ADCs, RF-DACs, Table 23 and Table 25.
05/20/2020 3.11 Added VU23P throughout document. Added Zynq UltraScale+ RFSoCs to Table 22.
Updated Table 1, Table 10, Table 21, Table 23, and Cache Coherent Interconnect for
Accelerators (CCIX).
08/21/2019 3.10 Added VU19P and ZU43DR throughout document.
06/27/2019 3.9 Added VU45P and VU47P throughout document. Updated Routing, SSI, Logic, Storage,
and Signal Processing, and High Bandwidth Memory (HBM). Added VU27P to Table 25.
05/13/2019 3.8 Updated VU27P in Table 9 and ZU39DR in Table 19.
02/20/2019 3.7 Added XCZU39DR, XCZU46DR, XCZU47DR, XCZU48DR, and XCZU49DR. Updated
Table 19, Table 20, RF-ADCs, RF-DACs, and Table 25.
11/12/2018 3.6 Updated PCIe information throughout document: Processing System Overview, I/O,
Transceiver, PCIe, 100G Ethernet, and 150G Interlaken, Table 5, Table 13, Table 15,
Table 17, Table 19, Table 21, Integrated Interface Blocks for PCI Express Designs, and
Table 22. Updated VU27P resource and package information in Table 9 and Table 12.
08/21/2018 3.5 Changed document classification to Product Specification from Preliminary Product
Specification. Updated RF Data Converter Subsystem Overview. Updated RF-ADCs and
RF-DACs.
05/17/2018 3.4 Updated RF Data Converter Subsystem Overview, Table 19, RF-ADCs, and Table 25
(removed -3E, added -2LI and note 4 for the DR devices). Added FSGA2577 to Table 12.
03/12/2018 3.3 Added VU27P and VU29P: Updated Table 1, I/O, Transceiver, PCIe, 100G Ethernet, and
150G Interlaken, Table 9, Table 12, High-Speed Serial Transceivers, and Table 21, and
added GTM Transceivers. Updated Note 4 in Table 14 and Table 16.
01/23/2018 3.2 Updated RFADC/DAC rates in RF Data Converter Subsystem Overview, Table 19,
RF-ADCs, and RF-DACs.
11/15/2017 3.1 Updated Table 20 with FSVE1156, FSVG1517, and FSVF176 0 packages. Updated
Figure 5.
10/03/2017 3.0 Added Zynq UltraScale+ RFSoC information throughout document. Updated General
Description, Table 1, RF Data Converter Subsystem Overview, Soft Decision Forward Error
Correction (SD-FEC) Overview, Processing System Overview (including Table 2),
Configuration, Encryption, and System Monitoring, Table 23, Table 25, and Figure 5.
Updated UltraRAM ZU4CG/ZU4EG/ZU4EV values in Table 13, Table 15, Table 17.
Added Table 19, Table 20, RF Data Converter Subsystem Overview, and Soft Decision
Forward Error Correction (SD-FEC) Overview.
Updated Figure 3, Figure 4, and Figure 5.
02/15/2017 2.11 Updated Table 1, Table 9: Converted HBM from Gb to GB. Updated Table 13, Table 15, and
Table 17: Updated DSP count for Zynq UltraScale+ MPSoCs. Updated Cache Coherent
Interconnect for Accelerators (CCIX). Updated High Bandwidth Memory (HBM). Updated
Table 25: Added-2E speed grade to all UltraScale+ devices. Removed -3E from XCZU2
and XCZU3.
11/09/2016 2.10 Updated Table 1. Added HBM devices to Table 9, Table 12, Table 23 and new High
Bandwidth Memory (HBM) section. Added Cache Coherent Interconnect for Accelerators
(CCIX) section.
09/27/2016 2.9 Updated Table 5, Table 14, Table 15, and Table 16.
(I XILINX, www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 49
06/03/2016 2.8 Added Zynq UltraScale+ MPSoC CG devices: Added Table 2. Updated Table 13, Table 14,
Table 25, and Figure 5. Created separate tables for EG and EV devices: Table 15,
Table 16, Table 17, and Table 18.
Updated Table 1, Table 3, Table 5 and notes, Table 6 and notes, Table 7, Table 9, Table 12,
Processing System Overview, and Processing System (PS) details.
02/17/2016 2.7 Added Migrating Devices. Updated Table 4, Table 5, Table 6, Table 12, Table 13, Table 14,
and Figure 4.
12/15/2015 2.6 Updated Table 1, Table 5, Table 6, Table 9, Table 14, and Configuration.
11/24/2015 2.5 Updated Configuration, Encryption, and System Monitoring, Table 5, Table 9, Table 13,
and Table 25.
10/15/2015 2.4 Updated Table 1, Table 3, Table 5, Table 7, Table 9, and Table 13 with System Logic Cells.
Updated Figure 3. Updated Table 23.
09/29/2015 2.3 Added A1156 to KU095 in Table 4. Updated Table 5. Updated Max. Distributed RAM in
Table 9. Updated Distributed RAM in Table 13. Added Table 23. Updated Table 25.
Updated Figure 3.
08/14/2015 2.2 Updated Table 1. Added XCKU025 to Table 3, Table 4, and Table 25. Updated Table 7,
Table 9, Table 13, Table 14, Table 22. Updated System Monitor. Added voltage
information to Table 25.
04/27/2015 2.1 Updated Table 1, Table 3, Table 4, Table 5, Table 6, Table 7, Table 12, Table 13, Table 14,
Table 21, I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken, Integrated
Interface Blocks for PCI Express Designs, USB 3.0/2.0, Clock Management, System
Monitor, and Figure 3.
02/23/2015 2.0 UltraScale+ device information (Kintex UltraScale+ FPGA, Virtex UltraScale+ FPGA, and
Zynq UltraScale+ MPSoC) added throughout document.
12/16/2014 1.6 Updated Table 1; I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken; Table 3,
Table 7; Table 8; and Table 21.
11/17/2014 1.5 Updated I/O, Transceiver, PCIe, 100G Ethernet, and 150G Interlaken; Table 1; Table 4;
Table 7; Table 8; Table 21; Input/Output; and Figure 3.
09/16/2014 1.4 Updated Logic Cell information in Table 1. Updated Table 3; I/O, Transceiver, PCIe, 100G
Ethernet, and 150G Interlaken; Table 7; Table 8; Integrated Block for 100G Ethernet; and
Figure 3.
05/20/2014 1.3 Updated Table 8.
05/13/2014 1.2 Added Ordering Information. Updated Table 1, Clocks and Memory Interfaces, Table 3,
Table 7 (removed XCVU145; added XCVU190), Table 8 (removed XCVU145; removed
FLVD1924 from XCVU160; added XCVU190; updated Table Notes), Table 21, Integrated
Interface Blocks for PCI Express Designs, and Integrated Block for Interlaken, and
Memory Interfaces.
02/06/2014 1.1 Updated PCIe information in Table 1 and Table 3. Added FFVJ1924 package to Table 8.
12/10/2013 1.0 Initial Xilinx release.
Date Version Description of Revisions
(I XILINX s”) is provided solely for the selection and use olelinx products. To the are made available "AS IS” and with all faults, Xillrix hereby DISCLAIMS OR STATUTORV, INCLUDING BUT NOT LIMITED TO WARRANTIES OF ANv PARTICULAR PURPOSE; and (2) xilinx shall not be liable (whether heory of liability) forariy loss ordamage ofany kind or nature related uding your use of the Materials), including for any direct, indirect, ing loss of data, proflts, goodwill, or any type of loss or damage en if such damage or loss was reasonably foreseeable or Xilirlx had o obligation to correct any errors contained in the Materials or to ons. Vou may not reproduce, modify, distribute, or publicly display re subiect to the terms and conditions of xilinx's limited warranty, http://www.xilinxcom/legalhtmvttos; lR cores may be subject to ucts are not designed or intended to b 5k and liability for use of Xilinx produc http://wwwxilinxcom/ legal.htm#tos www.xi|inx.com
UltraScale Architecture and Product Data Sheet: Overview
DS890 (v3.14) September 14, 2020 www.xilinx.com
Product Specification 50
Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect,
special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had
been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to
notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display
the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty,
please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to
warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products
in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at http://www.xilinx.com/ legal.htm#tos.
This document contains preliminary information and is subject to change without notice. Information provided herein relates to
products and/or services not yet available for sale, and provided solely for information purposes and are not intended, or to be
construed, as an offer for sale or an attempted commercialization of the products and/or services referred to herein.
Automotive Applications Disclaimer
AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD ("SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.